OPTIMIZING HEALTHCARE RESOURCES: SODIUM-GLUCOSE COTRANSPORTER INHIBITORS FOR CARDIOVASCULAR RISK REDUCTION IN TYPE 2 DIABETES MELLITUS

Main Article Content

Moeez Saqib
Mbony Joshua Cho
Dr. Nishat waqas
Amgad Samir Abdelmageed Mohamed Elfeki
FNU Vishal
Aarti Kumari
Muodiaju Chiazor Joan
Ahmed Samir Abdelmageed Mohamed Elfiki

Keywords

glucose, sodium, cotransporter, diabetes, cardioprotection, cost-effectiveness

Abstract

Introduction: Type 2 diabetes mellitus (T2DM) poses a significant economic burden due to its association with cardiovascular complications, making it a leading cause of premature mortality and straining healthcare systems.


Methods: A systematic electronic search was conducted for clinical trials published between January 2015 and January 2023 in PubMed, Scopus, Web of Science, and ScieLO databases. These trials evaluated the safety and efficacy of sodium-glucose cotransporter inhibitors (SGLT2i) in patients with T2DM and established cardiovascular disease, focusing on standard treatment and cost-effectiveness analysis.


Results: The addition of SGLT2i to standard therapy led to notable reductions in rates of acute myocardial infarction, stroke, cardiovascular death, and hospitalization for heart failure. The observed decrease in cardiovascular events offset the costs associated with SGLT2i therapy, demonstrating a favorable utilization of healthcare resources.


Conclusions: Given that cardiovascular events are the primary cause of mortality in patients with T2DM and cardiovascular disease, there is a pressing need for the development of therapies that not only improve glycemic control but also mitigate cardiovascular risks. These findings underscore the emergence of an evidence-based approach to managing such patients, heralding a new era in clinical practice.

Abstract 281 | Pdf Downloads 98

References

1. Al-Shamasi, A.-A., Elkaffash, R., Mohamed, M., Rayan, M., Al-Khater, D., Gadeau, A.-P., Ahmed, R., Hasan, A., Eldassouki, H., & Yalcin, H. C. (2021). Crosstalk between sodium-glucose cotransporter inhibitors and sodium–hydrogen exchanger 1 and 3 in cardiometabolic diseases. International Journal of Molecular Sciences, 22(23), 12677.
2. Arvanitakis, K., Koufakis, T., Kotsa, K., & Germanidis, G. (2022). The effects of sodium-glucose cotransporter two inhibitors on hepatocellular carcinoma: From molecular mechanisms to potential clinical implications. Pharmacological Research, 181, 106261.
3. Bassols, J., de Zegher, F., Diaz, M., Carreras‑Badosa, G., Garcia‑Beltran, C., Puerto‑Carranza, E., Oliver‑Vila, C., Casano, P., Franco, C. A., & Malpique, R. (2023). Correction: Effects of half-dose spiomet treatment in girls with early puberty and accelerated bone maturation: a multicenter, randomized, placebo-controlled study protocol. Trials, 24.
4. Chen, C., Peng, H., Li, M., Lu, X., Huang, M., Zeng, Y., & Dong, G. (2021). Patients with type 2 diabetes mellitus and heart failure benefit more from sodium-glucose cotransporter two inhibitors: a systematic review and meta-analysis—frontiers in Endocrinology, 12, 664533.
5. Croteau, D., Luptak, I., Chambers, J. M., Hobai, I., Panagia, M., Pimentel, D. R., Siwik, D. A., Qin, F., & Colucci, W. S. (2021). Effects of sodium-glucose-linked transporter two inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. Journal of the American Heart Association, 10(13), e019995.
6. Eraikhuemen, N., Leung, S., Warren, S. B., Lazaridis, D., Smith, C. H., Kearson, M. L., & Marcellus, V. (2023). Effects of the Sodium-Glucose Cotransporter Inhibitors on Cardiovascular Death and All-Cause Mortality: A Systematic Review and Meta-analysis of Randomized Placebo-Controlled Clinical Trials. American Journal of Cardiovascular Drugs, 23(2), 113-126.
7. Feig, D. S., Donovan, L. E., Zinman, B., Sanchez, J. J., Asztalos, E., Ryan, E. A., Fantus, I. G., Hutton, E., Armson, A. B., & Lipscombe, L. L. (2020). Metformin in women with type 2 diabetes in pregnancy (MiTy): a multicentre, international, randomized, placebo-controlled trial. The Lancet Diabetes & Endocrinology, 8(10), 834-844.
8. Fralick, M., & Zinman, B. (2021). The discovery of insulin in Toronto: beginning a 100-year journey of research and clinical achievement. Diabetologia, 64(5), 947-953.
9. Garz, S., Giné, X., Karlan, D., Mazer, R., Sanford, C., & Zinman, J. (2021). Consumer protection for financial inclusion in low-and middle-income countries: Bridging regulator and academic perspectives. Annual Review of Financial Economics, 13, 219-246.
10. Honigberg, M. C., Vardeny, O., & Vaduganathan, M. (2020). Practical considerations for the use of sodium-glucose cotransporter two inhibitors in heart failure. Circulation: Heart Failure, 13(2), e006623.
11. Huynh, K. (2019). Dapagliflozin—a breakthrough in the search for drugs to treat HFrEF. Nature Reviews Cardiology, 16(12), 700-700.
12. Kaur, P., Kumar, M., Parkash, J., & Prasad, D. (2019). Oral hypoglycemic drugs: An overview. Journal of Drug Delivery and Therapeutics, 9(3-s), 770-777.
13. Kharitonova, T., Shvarts, Y. G., Verbovoy, A. F., Orlova, N. S., Puzyreva, V. P., & Strokov, I. A. (2022). Efficacy and safety of the combined metabolic medication, containing inosine, nicotinamide, riboflavin, and succinic acid, for the treatment of diabetic neuropathy: a multicenter randomized, double-blind, placebo-controlled parallel group clinical trial (CYLINDER). BMJ Open Diabetes Research and Care, 10(3), e002785.
14. Kramer, C. K., Retnakaran, R., & Zinman, B. (2021). Insulin and insulin analogs as antidiabetic therapy: A perspective from clinical trials. Cell metabolism, 33(4), 740-747.
15. Kubica, J., Kubica, A., Grzelakowska, K., Stolarek, W., Grąbczewska, Z., Michalski, P., Niezgoda, P., Bartuś, S., Budaj, A., & Dąbrowski, M. (2023). Inhibitors of sodium-glucose transport protein 2: A new multidirectional therapeutic option for heart failure patients. Cardiology Journal, 30(1), 143-149.
16. Miller, T., Cudkowicz, M., Shaw, P. J., Andersen, P. M., Atassi, N., Bucelli, R. C., Genge, A., Glass, J., Ladha, S., & Ludolph, A. L. (2020). Phase 1–2 trial of antisense oligonucleotide towers for SOD1 ALS. New england journal of medicine, 383(2), 109-119.
17. Neuen, B. L., Oshima, M., Agarwal, R., Arnott, C., Cherney, D. Z., Edwards, R., Langkilde, A. M., Mahaffey, K. W., McGuire, D. K., & Neal, B. (2022). Sodium-glucose cotransporter two inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data from randomized, controlled trials. Circulation, 145(19), 1460-1470.
18. Nørgaard, C. H., Friedrich, S., Hansen, C. T., Gerds, T., Ballard, C., Møller, D. V., Knudsen, L. B., Kvist, K., Zinman, B., & Holm, E. (2022). Treatment with glucagon‐like peptide‐1 receptor agonists and incidence of dementia: data from pooled double‐blind, randomized controlled trials and nationwide disease and prescription registers. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 8(1), e12268.
19. Olmedo-Muñoz, M., & Recalde-Navarrete, R. (2023). Cardiometabolic effect of sodium and glucose cotransporter inhibitors type 2. Salud, Ciencia y Tecnología, 3, 563-563.
20. Ryan, S. P., Newman, A. A., Wilburn, J. R., Rhoades, L. D., Trikha, S. R. J., Godwin, E. C., Schoenberg, H. M., Battson, M. L., Ewell, T. R., & Luckasen, G. J. (2020). Sodium-glucose cotransporter two inhibition does not favorably modify the physiological responses to dietary counseling in diabetes-free, sedentary, overweight, and obese adult humans. Nutrients, 12(2), 510.
21. Shaman, A. M., Bain, S. C., Bakris, G. L., Buse, J. B., Idorn, T., Mahaffey, K. W., Mann, J. F., Nauck, M. A., Rasmussen, S., & Rossing, P. (2022). Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes: pooled analysis of SUSTAIN 6 and LEADER. Circulation, 145(8), 575-585.
22. Silva dos Santos, D., Polidoro, J. Z., Borges-Junior, F. A., & Girardi, A. C. (2020). Cardioprotection conferred by sodium-glucose cotransporter two inhibitors: a renal proximal tubule perspective. American Journal of Physiology-Cell Physiology, 318(2), C328-C336.
23. Vallianou, N. G., Tsilingiris, D., Kounatidis, D., Lempesis, I. G., Karampela, I., & Dalamaga, M. (2022). Sodiumglucose cotransporter2 inhibitors in obesity and associated cardiometabolic disorders: where do we stand. Pol Arch Intern Med, 132(10), 16342.
24. Xu, M., Zheng, J., Hou, T., Lin, H., Wang, T., Wang, S., Lu, J., Zhao, Z., Li, M., & Xu, Y. (2022). SGLT2 inhibition, choline metabolites, and cardiometabolic diseases: a mediation Mendelian randomization study. Diabetes Care, 45(11), 2718-2728.
25. Zhang, N., Wang, Y., Tse, G., Korantzopoulos, P., Letsas, K. P., Zhang, Q., Li, G., Lip, G. Y., & Liu, T. (2021). Effect of sodium-glucose cotransporter-2 inhibitors on cardiac remodeling: a systematic review and meta-analysis. European Journal of Preventive Cardiology, 28(17), 1961-1973.
26. Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O. E., & Woerle, H. J. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New england journal of medicine, 373(22), 2117-2128.

Most read articles by the same author(s)

<< < 1 2