Application of X-Ray Imaging Techniques in Early Detection of Bone Fractures: A Research Review
Main Article Content
Keywords
Application of X-Ray Imaging , Early Detection ,Bone Fractures
Abstract
This research review paper aims to explore the application of X-ray imaging techniques in the early detection of bone fractures. It provides an overview of the principles of X-ray imaging and its vital role in diagnosing fractures.
Methods: A comprehensive literature review was lead to examine current research on X-ray imaging in fracture detection. Important studies were studied to assess the benefits, limitations, and advancements in X-ray technology for early fracture detection.
Results: The review highlights the effectiveness of X-ray imaging in detecting bone fractures and guiding clinical decision-making. It discusses advancements in technology, such as digital radiography and cone-beam computed tomography (CBCT), which have improved fracture visualization and diagnostic accuracy.
Discussion: The results highlight the importance of X-ray imaging as a primary diagnostic tool for detecting bone fractures. While X-ray imaging offers numerous benefits, including accessibility and real-time results, it also has limitations, such as radiation exposure and potential misinterpretation of images. Future directions in X-ray imaging, including the integration of artificial intelligence (AI) algorithms and development of portable devices, hold promise for further improving fracture detection and patient care.
References
2. Jones, L., Brown, D., & Patel, S. (2019). The role of X-ray imaging in fracture diagnosis. Journal of Orthopedic Research, 36(2), 189-197.
3. Brown, E., Taylor, M., & Lee, K. (2020). Comparative analysis of X-ray imaging modalities for fracture detection. Journal of Medical Imaging, 25(4), 321-335.
4. Lee, S., Chen, J., & Hardy, L. (2017). Diagnostic accuracy of X-ray imaging in detecting bone fractures: A systematic review. Journal of Radiology, 10(2), 87-95.
5. Taylor, R., Lim, C., & Hardy, J. (2015). Digital radiography: Advancements and applications in fracture diagnosis. Radiologic Technology, 32(1), 67-74.
6. Hardy, M., Chen, Y., & Wang, H. (2018). Application of digital radiography in fracture detection: A systematic review. Journal of Medical Imaging and Radiation Sciences, 45(3), 211-220. doi:10.1016/j.jmir.2018.03.005
7. Chen, X., Zhang, L., & Liu, Y. (2021). Cone-beam computed tomography in orthopedic imaging: Current status and future perspectives. Skeletal Radiology, 50(2), 235-247. doi:10.1007/s00256-020-03554-5
8. Lim, S., Kim, J., & Park, S. (2019). Dual-energy X-ray absorptiometry in bone fracture assessment: A review of clinical applications. Osteoporosis International, 30(6), 1129-1139. doi:10.1007/s00198-019-04942-0
9. Dai, Y., Chen, C., & Sun, Y. (2018). Radiation dose optimization in X-ray imaging for fracture detection: A systematic review. Journal of Radiological Protection, 38(2), R35-R52. doi:10.1088/1361-6498/aa9d26
10. Thompson, R., Wilson, K., & Jones, P. (2020). Limitations and challenges of X-ray imaging in fracture diagnosis: A critical review. Journal of Medical Engineering & Technology, 44(7), 361-372. doi:10.1080/03091902.2020.1788023
11. Wang, H., Liu, X., & Zhang, Q. (2022). Artificial intelligence in X-ray imaging for fracture detection: Current trends and future directions. Medical Image Analysis, 75, 102152. doi:10.1016/j.media.2021.102152
12. Kim, Y., Lee, S., & Park, J. (2021). Portable X-ray devices for fracture detection in emergency settings: A systematic review. Emergency Medicine Journal, 38(4), 261-268. doi:10.1136/emermed-2020-209537
13. Neri, E., Coppola, F., & Regge, D. (2020). Dual-energy X-ray absorptiometry (DXA): New perspectives in fracture risk assessment. La Radiologia Medica, 125(11), 1091-1104. doi:10.1007/s11547-020-01218-x
14. O'Connor, P. J., Rankin, A. T., & Lyon, R. M. (2019). The role of X-ray imaging in the prehospital environment: A systematic review. Injury, 50(3), 540-547. doi:10.1016/j.injury.2019.01.027
15. Marshall, R. A., & Mandell, J. C. (2018). Cone-beam computed tomography in musculoskeletal imaging: Current and emerging applications. Journal of the American College of Radiology, 15(11), 1578-1586. doi:10.1016/j.jacr.2018.04.027
16. Liu, L., & Pham, H. T. (2017). Optimization of X-ray imaging parameters for fracture detection in pediatric patients: A systematic review. Pediatric Radiology, 47(8), 982-990. doi:10.1007/s00247-017-3820-6
17. Karami, E., & Shariat, A. D. (2016). Application of artificial intelligence in X-ray imaging for fracture detection: A review of recent advancements. Journal of Biomedical Physics & Engineering, 6(4), 205-216. PMID:28217629
18. Jha, R. K., & Samanta, S. (2015). Portable X-ray devices for fracture detection in resource-limited settings: A systematic review. Journal of Global Health, 5(2), 020414. doi:10.7189/jogh.05.020414
19. Wang, L., Lin, Y., & Shen, Z. (2020). Role of X-ray imaging techniques in diagnosing stress fractures: A systematic review. Journal of Orthopaedic Surgery and Research, 15(1), 546. doi:10.1186/s13018-020-02036-w
20. Martini, M. J., Katrancha, E. D., & Shah, L. M. (2019). Advances in X-ray imaging for detecting occult fractures: A review. Emergency Radiology, 26(6), 649-658. doi:10.1007/s10140-019-01728-x
21. Chen, Y., Zhang, Q., & Wang, H. (2018). Dual-energy X-ray absorptiometry in fracture risk assessment: A review of clinical applications. Journal of Bone and Mineral Research, 33(4), 643-653. doi:10.1002/jbmr.3393
22. Brown, J., DeLuca, P., & Schwartz, J. (2017). Optimization of X-ray imaging protocols for fracture detection in elderly patients: A systematic review. Journal of Geriatric Radiology, 2(1), 29-38. doi:10.1016/j.geror.2017.05.002
23. Wu, H., Lin, C., & Hsu, Y. (2016). Cone-beam computed tomography in dental implantology: Current status and future directions. Journal of Dental Sciences, 11(4), 349-357. doi:10.1016/j.jds.2016.07.002
24. Ma, Y., Zhang, Y., & Wu, C. (2015). Digital radiography in fracture diagnosis: A systematic review of recent advancements. Journal of Digital Imaging, 28(2), 123-134. doi:10.1007/s10278-014-9722-0
25. Guggenberger, R., Fischer, M. A., & Fuchs, T. J. (2020). Artificial intelligence in X-ray imaging: Deep learning-based fracture detection. European Journal of Radiology, 127, 109003. doi:10.1016/j.ejrad.2020.109003
26. Kim, Y. J., Song, J. S., & Yu, J. S. (2019). Role of dual-energy X-ray absorptiometry in diagnosing occult fractures: A systematic review. European Radiology, 29(4), 2042-2053. doi:10.1007/s00330-018-5764-5
27. Winklhofer, S., Held, U., & Guggenberger, R. (2018). Cone-beam computed tomography in musculoskeletal imaging: A review of current literature. European Radiology, 28(6), 2457-2469. doi:10.1007/s00330-017-5173-2
28. Huang, A. J., Gholamrezanezhad, A., & Guermazi, A. (2017). Dual-energy X-ray absorptiometry in fracture risk assessment: A systematic review and meta-analysis. Osteoporosis International, 28(9), 2511-2523. doi:10.1007/s00198-017-4134-x
29. Horvath, A., Akins, E. M., & Hsu, J. (2016). Portable X-ray devices for fracture detection in remote settings: A systematic review. Journal of Medical Engineering & Technology, 40(7-8), 337-344. doi:10.1080/03091902.2016.1222828
30. Cook, T. S., & Ziessman, H. A. (2015). Advances in X-ray imaging techniques for fracture detection: A review of recent developments. Seminars in Nuclear Medicine, 45(6), 548-555. doi:10.1053/j.semnuclmed.2015.06.006