MOLECULAR CHARACTERIZATION AND ANTIBIOTIC RESISTANCE PATTERNS AGAINST E. COLI, P. AERUGINOSA, ENTEROBACTER SPP. AND KLEBSIELLA SPP. IN HUMANS AND ANIMALS. FIRST EVER REPORTED STRAINS IN DIVISION SAHIWAL
Main Article Content
Keywords
Antibiotics, humans, animals, bacteria, resistance
Abstract
Background: Antimicrobial medications have been crucial in both animals and humans to reduce infections and death rate. Antibiotic resistance is found in all bacteria including E. coli, P. aeruginosa, Enterobacter spp. and Klebsiella spp. To find out the effective medication is necessary to cure the disease resulted from bacteria. Objectives: The purpose of the study was to isolate, test antibiotic resistance patterns against bacteria and to find novel strains from division. Methodology: This study was conducted in accordance to the declarations of Helsinki. About 120 stool samples from humans and 100 fecal samples were collected from chicken and goat. Bacteria were isolated in laboratory. Biochemical tests were employed to identify bacteria. To test antibiotic susceptibility five antibiotics on humans and thirteen antibiotics on chicken and goat were used against bacteria. DNA was extracted and checks quantity by agarose gel electrophoresis. The 16srRNA primers were used for PCR analysis. Results: In humans, Ofloxacin and Ciprofloxacin were sensitive, ceftriaxone and ampicillin shows no sensitivity against bacteria. Cefixime shows resistance to both bacteria. In chicken and goat streptomycin was sensitive, while all others were not sensitive against bacteria. Azithromycin. Nalidixic acid, Pencillin and Ofloxacin were completely resistant. Conclusion: It is concluded that E. Coli, P. aeruginosa, Enterobacter spp. and Klebsiella spp. in humans and animals are first reported in division. These could be risk for human health because of the chance of transmission of these bacteria to people by food chain or direct interaction to humans.
References
2. Levy SB, Marshall BJNm. Antibacterial resistance worldwide: causes, challenges and responses. 2004;10(12):S122-S9.
3. Hessain AM, Al-Arfaj AA, Zakri AM, El-Jakee JK, Al-Zogibi OG, Hemeg HA, et al. Molecular characterization of Escherichia coli O157: H7 recovered from meat and meat products relevant to human health in Riyadh, Saudi Arabia. 2015;22(6):725-9.
4. Javadi M, Oloomi M, Bouzari SJJop. Genotype cluster analysis in pathogenic Escherichia coli isolates producing different CDT types. 2016;2016.
5. Von Baum H, Marre RJIJoMM. Antimicrobial resistance of Escherichia coli and therapeutic implications. 2005;295(6-7):503-11.
6. Sodha S, Lynch M, Wannemuehler K, Leeper M, Malavet M, Schaffzin J, et al. Multistate outbreak of Escherichia coli O157: H7 infections associated with a national fast-food chain, 2006: a study incorporating epidemiological and food source traceback results. 2011;139(2):309-16.
7. Taur Y, Smith MAJCid. Adherence to the Infectious Diseases Society of America guidelines in the treatment of uncomplicated urinary tract infection. 2007;44(6):769-74.
8. Igarashi T, Inatomi J, Wake A, Takamizawa M, Katayama H, Iwata TJTJop. Failure of pre-diarrheal antibiotics to prevent hemolytic uremic syndrome in serologically proven Escherichia coli O157: H7 gastrointestinal infection. 1999;135(6):768-9.
9. Acar J, Goldstein FJCID. Trends in bacterial resistance to fluoroquinolones. 1997;24(Supplement_1):S67-S73.
10. Kresken M, Hafner D, Wiedemann B, Mittermayer H, Verbist L, Bergogne-Bérézin E, et al. Prevalence of fluoroquinolone resistance in Europe. 1994;22(2):S90-S8.
11. Soussy CJLLdLIHs. L’évolution de l’écologie bactérienne hospitalière menace-t-elle le gain thérapeutique des fluoroquinolones au même titre que celui des autres antibactériens. 1991:6-7.
12. Prosser BLT, Beskid GJDm, disease i. Multicenter in vitro comparative study of fluoroquinolones against 25,129 gram-positive and gram-negative clinical isolates. 1995;21(1):33-45.
13. POOLE KJJoAC. Bacterial multidrug resistance—emphasis on efflux mechanisms and Pseudomonas aeruginosa. 1994;34(4):453-6.
14. Antunes Pc, Réu C, Sousa JC, Peixe Ls, Pestana NJIjofm. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. 2003;82(2):97-103.
15. Berge AC, Hancock DD, Sischo WM, Besser TEJJotAVMA. Geographic, farm, and animal factors associated with multiple antimicrobial resistance in fecal Escherichia coli isolates from cattle in the western United States. 2010;236(12):1338-44.
16. de Verdier K, Nyman A, Greko C, Bengtsson BJAVS. Antimicrobial resistance and virulence factors in Escherichia coli from Swedish dairy calves. 2012;54(1):1-10.
17. Duse A, Waller KP, Emanuelson U, Unnerstad HE, Persson Y, Bengtsson BJJods. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. 2015;98(1):500-16.
18. Ho P-L, Wong RC, Lo SW, Chow K-H, Wong SS, Que T-LJJomm. Genetic identity of aminoglycoside-resistance genes in Escherichia coli isolates from human and animal sources. 2010;59(6):702-7.
19. Hordijk J, Mevius DJ, Kant A, Bos ME, Graveland H, Bosman AB, et al. Within-farm dynamics of ESBL/AmpC-producing Escherichia coli in veal calves: a longitudinal approach. 2013;68(11):2468-76.
20. Kikuvi G, Schwarz S, Ombui J, Mitema E, Kehrenberg CJMdr. Streptomycin and chloramphenicol resistance genes in Escherichia coli isolates from cattle, pigs, and chicken in Kenya. 2007;13(1):62-8.
21. Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine CJA, Microbiology E. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. 2009;75(3):559-66.
22. Lee JHJA, microbiology e. Methicillin (oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. 2003;69(11):6489-94.
23. Sengeløv G, Halling-Sørensen B, Aarestrup FMJVm. Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. 2003;95(1-2):91-101.
24. Smith J, Drum D, Dai Y, Kim J, Sanchez S, Maurer J, et al. Impact of antimicrobial usage on antimicrobial resistance in commensal Escherichia coli strains colonizing broiler chickens. 2007;73(5):1404-14.
25. Witte WJIjoaa. Selective pressure by antibiotic use in livestock. 2000;16:19-24.
26. Zhang XY, Ding LJ, Fan MZJRivs. Resistance patterns and detection of aac (3)-IV gene in apramycin-resistant Escherichia coli isolated from farm animals and farm workers in northeastern of China. 2009;87(3):449-54.
27. Marshall BM, Levy SBJCmr. Food animals and antimicrobials: impacts on human health. 2011;24(4):718-33.
28. Scott LC, Menzies PIJVCFAP. Antimicrobial resistance and small ruminant veterinary practice. 2011;27(1):23-32.
29. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman JJNRM. Call of the wild: antibiotic resistance genes in natural environments. 2010;8(4):251-9.
30. Costa D, Poeta P, Sáenz Y, Vinué L, Coelho AC, Matos M, et al. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. 2008;14(1):71-7.
31. Espie E, Vaillant V, Mariani-Kurkdjian P, Grimont F, Martin-Schaller R, De Valk H, et al. Escherichia coli O157 outbreak associated with fresh unpasteurized goats' cheese. 2006;134(1):143-6.
32. Jacob M, Foster D, Rogers A, Balcomb C, Shi X, Nagaraja TJJofp. Evidence of non-O157 Shiga toxin–producing Escherichia coli in the feces of meat goats at a US slaughter plant. 2013;76(9):1626-9.
33. Vu-Khac H, Cornick NAJVM. Prevalence and genetic profiles of Shiga toxin-producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. 2008;126(4):356-63.
34. Akond MA, Alam S, Hassan S, Shirin MJIJofs. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. 2009;11:19-23.
35. Getanda PK, Kariuki F, Gitahi N, Onkoba N, Juma G, Kinyanjui P, et al. Genetic characterization and evaluation of antimicrobial resistance patterns of human salmonella typhi isolates in kenyatta national hospital in nairobi, kenya. 2017;3.
36. Ewing WH. Edwards and Ewing's identification of Enterobacteriaceae. Edwards and Ewing's Identification of Enterobacteriaceae. 1986(Edition 4).
37. Aneja K. Experiments in microbiology, plant pathology and biotechnology: New Age International; 2007.
38. Bauer A. Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol. 1966;45:149-58.
39. Wayne P. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7 Clinical and Laboratory Standards Institute. 2006.
40. Alexander KA, Warnick LD, Wiedmann M. Antimicrobial resistant Salmonella in dairy cattle in the United States. Veterinary research communications. 2009;33(3):191-209.
41. Shariar M, Kabir S. Status Of antibiotic resistant Salmonella Typhi strains from clinical isolates in Dhaka. Dhaka University Journal of Biological Sciences. 2010;19(2):207-9.
42. Qu M, Lv B, Zhang X, Yan H, Huang Y, Qian H, et al. Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhea in Beijing, China (2010–2014). Gut pathogens. 2016;8(1):1-9.
43. Singh S, Kshirsagar D, Brahmbhatt M, Nayak J, Chatur Y. Isolation and characterization of Salmonella spp. from buffalo meat samples. Buffalo Bulletin. 2015;34(3):301-12.
44. Addis Z, Kebede N, Sisay Z, Alemayehu H, Wubetie A, Kassa T. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: a cross sectional study. BMC infectious diseases. 2011;11(1):1-7.
45. Hui YZ. Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Frontiers in Microbiology. 2015;6:602.
46. Shariar M, Kabir SJDUJoBS. Status Of antibiotic resistant Salmonella Typhi strains from clinical isolates in Dhaka. 2010;19(2):207-9.
47. Singh S, Agarwal RK, Tiwari SC, Singh HJTah, production. Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India. 2012;44(3):665-74.
48. Siddiqui H, Jahan F, Siddiqui MAJPh. Pattern of Anti-microbial Drug Resistance in Childhood Typhoid Fever in a Selected Hospital in Karachi, Pakistan. 2019;4:5.
49. Xia Y, Chen F, Du Y, Liu C, Bu G, Xin Y, et al. A modified SDS-based DNA extraction method from raw soybean. 2019;39(2).
50. Green MJ, Thompson DA, MacKenzie DJJPD. Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. 1999;83(5):482-5.
51. Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza BJJoag. High-quality plant DNA extraction for PCR: an easy approach. 2009;50(2):105-7.
52. Morin NJ, Gong Z, Li X-FJCc. Reverse transcription-multiplex PCR assay for simultaneous detection of Escherichia coli O157: H7, Vibrio cholerae O1, and Salmonella Typhi. 2004;50(11):2037-44.
53. Hassan MM, Amin KB, Ahaduzzaman M, Alam M, Faruk M, Uddin IJRJVP. Antimicrobial resistance pattern against E. coli and Salmonella in layer poultry. 2014;2(2):30-5.
54. Omonigho S, Obasi E, Akukalia RJNJM. In vitro resistance of urinary isolates of Escherichia coli and Klebsiella species to nalidixic acid. 2001;15(1):25-9.
55. Ebie M, Kandakai-Olukemi Y, Ayanbadejo J, Tanyigna KJNJoM. Urinary tract infections in a Nigerian military hospital. 2001;15(1):31-7.
56. Chikere C, Chikere B, Omoni VJAJoB. Antibiogram of clinical isolates from a hospital in Nigeria. 2008;7(24).
57. Abdulrahman M, Amirlak I, Shamran IJEMJ. Urinary Tract Infection in children is still mismanagement problem. 1992;10:13-8.
58. Adeyemo A, Gbadegesin R, Onyemenem T, Ekweozor CJAotp. Urinary tract pathogens and antimicrobial sensitivity patterns in children in Ibadan, Nigeria. 1994;14(4):271-4.
59. Turay A, Eke S, Oleghe P, Ozekhome MJIJoB, Applied, Research I. The prevalence of urinary tract infections among pregnant women attending antenatal clinic at Ujoelen primary health care centre, Ekpoma, Edo state, Nigeria. 2014;3(3):86-94.
60. Onifade A, Omoya F, Adegunloye D. Incidence and control of urinary tract infections among pregnant women attending antenal clinics in government hospitals in Ondo State, Nigeria. 2005.
61. Aiyegoro O, Igbinosa O, Ogunmwonyi I, Odjadjare E, Igbinosa O, Okoh AJAJoMR. Incidence of urinary tract infections (UTI) among children and adolescents in Ile-Ife, Nigeria. 2007;1(2):13-9.
62. Piddock LJJCmr. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. 2006;19(2):382-402.
63. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin PJCmr. Modes and modulations of antibiotic resistance gene expression. 2007;20(1):79-114.
64. Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli YJAa, chemotherapy. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. 2007;51(8):3026-9.
65. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, et al. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. 2007;45(10):3352-9.
66. Pitout JD, Nordmann P, Laupland KB, Poirel LJJoac. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. 2005;56(1):52-9.
67. Mendonça N, Leitão J, Manageiro V, Ferreira EJAA. of the Antimicrobial Resistance Surveillance Program in PortugalCaniça M (2007) Spread of extended-spectrum βlactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal.1946-55.
68. Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KSJJocm. Prevalence of newer β-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. 2006;44(9):3318-24.
69. Lewis JS, Herrera M, Wickes B, Patterson JE, Jorgensen JHJAa, chemotherapy. First report of the emergence of CTX-M-type extended-spectrum β-lactamases (ESBLs) as the predominant ESBL isolated in a US health care system. 2007;51(11):4015-21.
70. Olowu W, Oyetunji TJWAjom. Nosocomial significant bacteriuria: prevalence and pattern of bacterial pathogens among children hospitalised for non-infective urinary tract disorders. 2003;22(1):72-5.
71. Fagade O, Adedeji G, Oyelade A, editors. Antibiotics sensitivity patterns of clinical samples and possible use of selected citrus juice extract in therapeutic treatment. the Book of Abstract of the 29th Annual Conference & General Meeting (Abeokuta 2005) on Microbes As Agents of Sustainable Development, organized by Nigerian Society for Microbiology (NSM), University of Agriculture, Abeokuta, from; 2005.
72. Sahm DF, Thornsberry C, Mayfield DC, Jones ME, Karlowsky JAJAa, chemotherapy. Multidrug-resistant urinary tract isolates of Escherichia coli: prevalence and patient demographics in the United States in 2000. 2001;45(5):1402-6.
73. Sherley M, Gordon DM, Collignon PJJM. Evolution of multi-resistance plasmids in Australian clinical isolates of Escherichia coli. 2004;150(5):1539-46.
74. Oteo J, Campos J, Baquero FJJoAC. Antibiotic resistance in 1962 invasive isolates of Escherichia coli in 27 Spanish hospitals participating in the European Antimicrobial Resistance Surveillance System (2001). 2002;50(6):945-52.
75. Coombs GW, Daley DA, Lee YT, Pang SJCdi. Australian group on antimicrobial resistance (AGAR) Australian Staphylococcus aureus sepsis outcome programme (ASSOP) annual report 2017. 2019;43.
76. Hsu L-Y, Tan T-Y, Jureen R, Koh T-H, Krishnan P, Lin RT-P, et al. Antimicrobial drug resistance in Singapore hospitals. 2007;13(12):1944.
77. Bronzwaer S, Goettsch W, Olsson-Liljequist B, Wale M, Vatopoulos A, Sprenger MJE. European antimicrobial resistance surveillance system (EARSS): objectives and organisation. 1999;4(4):41-4.
78. Song J-H, Hiramatsu K, Suh JY, Ko KS, Ito T, Kapi M, et al. Emergence in Asian countries of Staphylococcus aureus with reduced susceptibility to vancomycin. 2004;48(12):4926-8.
79. Hirakata Y, Matsuda J, Miyazaki Y, Kamihira S, Kawakami S, Miyazawa Y, et al. Regional variation in the prevalence of extended-spectrum β-lactamase–producing clinical isolates in the Asia-Pacific region (SENTRY 1998–2002). 2005;52(4):323-9.
80. Koh TH, Sng L-H, Wang GCY, Hsu L-Y, Zhao YJJoac. IMP-4 and OXA β-lactamases in Acinetobacter baumannii from Singapore. 2007;59(4):627-32.
81. Ayandele A, Oladipo E, Oyebisi O, Kaka MJQmj. Prevalence of multi-antibiotic resistant Escherichia coli and Klebsiella species obtained from a tertiary medical institution in Oyo State, Nigeria. 2020;2020(1):9.
82. Stanley IJ, Kajumbula H, Bazira J, Kansiime C, Rwego IB, Asiimwe BBJPo. Multidrug resistance among Escherichia coli and Klebsiella pneumoniae carried in the gut of out-patients from pastoralist communities of Kasese district, Uganda. 2018;13(7):e0200093.
83. Eltai NO, Yassine HM, Al Thani AA, Abu Madi MA, Ismail A, Ibrahim E, et al. Prevalence of antibiotic resistant Escherichia coli isolates from fecal samples of food handlers in Qatar. 2018;7(1):1-7.
84. Kim S-H, Wei C-I, Tzou Y-M, An HJJofp. Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. 2005;68(10):2022-9.
85. Osundiya O, Oladele R, Oduyebo OJAJoC, Microbiology E. Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. 2013;14(3):164-8.
86. Lee DS, Lee S-J, Choe H-SJBri. Community-acquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. 2018;2018.
87. Khaertynov KS, Anokhin VA, Rizvanov AA, Davidyuk YN, Semyenova DR, Lubin SA, et al. Virulence factors and antibiotic resistance of Klebsiella pneumoniae strains isolated from neonates with sepsis. 2018;5:225.
88. Kikuvi G, Ole-Mapenay I, Mitema E, Ombui J. Antimicrobial resistance in Escherichia coli isolates from faeces and carcass samples of slaughtered cattle, swine and chickens in Kenya. 2013.
89. Hoyle DV, Shaw DJ, Knight HI, Davison HC, Pearce MC, Low JC, et al. Age-related decline in carriage of ampicillin-resistant Escherichia coli in young calves. 2004;70(11):6927-30.
90. Pallecchi L, Lucchetti C, Bartoloni A, Bartalesi F, Mantella A, Gamboa H, et al. Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. 2007;51(4):1179-84.
91. Edrington T, Farrow R, Carter B, Islas A, Hagevoort G, Callaway T, et al. Age and diet effects on fecal populations and antibiotic resistance of a multi-drug resistant Escherichia coli in dairy calves. 2012.
92. Hoyle D, Davison H, Knight H, Yates C, Dobay O, Gunn G, et al. Molecular characterisation of bovine faecal Escherichia coli shows persistence of defined ampicillin resistant strains and the presence of class 1 integrons on an organic beef farm. 2006;115(1-3):250-7.
93. Langlois BE, Dawson KA, Leak I, Aaron DKJA, microbiology e. Effect of age and housing location on antibiotic resistance of fecal coliforms from pigs in a non-antibiotic-exposed herd. 1988;54(6):1341-4.
94. Ndegwa E, Almehmadi H, Chyer K, Kaseloo P, Ako AAJA. Longitudinal shedding patterns and characterization of antibiotic Resistant E. coli in pastured goats using a cohort study. 2019;8(3):136.
95. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand LJPo. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. 2010;5(3):e9836.
96. Jernberg C, Löfmark S, Edlund C, Jansson JKJTIj. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. 2007;1(1):56-66.
97. Ghosh S, LaPara TMJTIj. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. 2007;1(3):191-203.
98. Frickmann H, Dekker D, Schwarz NG, Hahn A, Boahen K, Sarpong N, et al. 16S rRNA gene sequence-based identification of bacteria in automatically incubated blood culture materials from tropical sub-Saharan Africa. 2015;10(8):e0135923.
99. Ajayi KO, Omoya FOJB, Biology M. Molecular Identification of Selected Multiple Antibiotic Resistance Bacteria Isolated from Poultry Droppings in Akure, Nigeria. 2017;2(1):6-11.