SYNTHESIS AND CHARACTERIZATION OF ZINC NANOPARTICLES USING THERMOSETTING RESINS

Main Article Content

Jyoti Chaudhary
Vipin Khoker
Giriraj Tailor

Keywords

.

Abstract

In this study, urea-formaldehyde nanoparticles doped with zinc and measuring an average of 26.10 nm in size were created using a straightforward chemical process. FT-IR and NMR spectroscopy have verified that the zinc polymer metal complex has formed successfully. X-ray diffraction, energy dispersive X-ray (EDX), and scanning electron microscopy (SEM) were used to measure the concentrations of these nanoparticles. XRD. Zinc salts and thermosetting polymer were used as precursors to create Zn NPs. After 30 minutes of calcination at 800 °C, Zn NPs were produced. Synthesized nanoparticles have a spherical form, according to a SEM investigation. The Zn NPs that are generated are crystalline, according to XRD examination..

Abstract 105 | PDF Downloads 56

References

1. Hirano, K.; Asami, M. Phenolic resins-100 years of progress and their future. React. Funct. Polym. 2013, 73, 256–269.
2. Nair, C.P.R. Advances in addition-cure phenolic resins. Prog. Polym. Sci. 2004, 29, 401–498.
3. Lei, Y.; Wu, Q.; Lian, K. Cure kinetics of aqueous phenol-formaldehyde resins used for oriented strandboard
4. manufacturing: Analytical technique. J. Appl. Polym. Sci. 2006, 100, 1642–1650.
5. Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., & Edwards, P. P. (2002). Size‐dependent chemistry: properties of nanocrystals. Chemistry–A European Journal, 8(1), 28-35.
6. Grassian, V. H. (2008). When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. The Journal of Physical Chemistry C, 112(47), 18303-18313.
7. Ray, P. C. (2010). Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical reviews, 110(9), 5332-5365.
8. Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914.
9. Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in colloid and interface science, 249, 37-52.
10. Malhotra, S. P. K., & Mandal, T. (2019). Zinc oxide nanostructure and its application as agricultural and industrial material. Contamin. Agric. Environ. Health Risks Remed, 1, 216.
11. Ali, R. N., Naz, H., Li, J., Zhu, X., Liu, P., & Xiang, B. (2018). Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles. Journal of Alloys and Compounds, 744, 90-95.
12. Khan, M. M., Saadah, N. H., Khan, M. E., Harunsani, M. H., Tan, A. L., & Cho, M. H. (2019). Phytogenic synthesis of band gap-narrowed ZnO nanoparticles using the bulb extract of Costus woodsonii. Bionanoscience, 9, 334-344.
13. Imtiazuddin, S. M., Mumtaz, M., & Mallick, K. A. (2012). Pollutants of wastewater characteristics in textile industries. J Basic App Sci, 8, 554-556.
14. Dihom, H. R., Al-Shaibani, M. M., Mohamed, R. M. S. R., Al-Gheethi, A. A., Sharma, A., & Khamidun, M. H. B. (2022). Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: A critical review. Journal of Water Process Engineering, 47, 102705.
15. Benelli, G., Caselli, A., & Canale, A. (2017). Nanoparticles for mosquito control: Challenges and constraints. Journal of King Saud University-Science, 29(4), 424-435.
16. Dezfuli, S. M., & Sabzi, M. (2019). Deposition of ceramic nanocomposite coatings by electroplating process: A review of layer-deposition mechanisms and effective parameters on the formation of the coating. Ceramics International, 45(17), 21835-21842.
17. Trieu, V., Schley, B., Natter, H., Kintrup, J., Bulan, A., & Hempelmann, R. (2012). RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity. Electrochimica acta, 78, 188-194.
18. Li, P., He, L., Liu, X., Fan, S., Yuan, Y., Zhang, J., ... & Li, S. (2021). Electro-deposition synthesis of tube-like collagen–chitosan hydrogels and their biological performance. Biomedical Materials, 16(3), 035019.
19. Kumar, R. (2020). NiCo2O4 nano-/microstructures as high-performance biosensors: a review. Nano-micro letters, 12, 1-52.
20. Beyler, C. L., & Hirschler, M. M. (2002). Thermal decomposition of polymers. SFPE handbook of fire protection engineering, 2(7), 111-131.
21. Witkowski, A., Stec, A. A., & Hull, T. R. (2016). Thermal decomposition of polymeric materials. SFPE handbook of fire protection engineering, 167-254.
22. Brault, J., Gendry, M., Grenet, G., Hollinger, G., Desieres, Y., & Benyattou, T. (1998). Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP (001). Applied physics letters, 73(20), 2932-2934.
23. Pacella, A., Ballirano, P., & Cametti, G. (2016). Quantitative chemical analysis of erionite fibres using a micro-analytical SEM-EDX method. European Journal of Mineralogy, 28(2), 257-264.
24. Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World journal of nano science and engineering, 2(3), 154-160.
25. Bokuniaeva, A. O., & Vorokh, A. S. (2019, December). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In journal of physics: Conference series (Vol. 1410, No. 1, p. 012057). IOP Publishing.