EVALUATIONOF ANTICANCER ACTIVITY OF PLANT MEDIATED IRON OXIDE NANOPARTICLES USING RHAZYA STRICTA
Main Article Content
Keywords
Plant-mediated nanoparticles, Rhazya stricta, Anticancer activity, brine shrimp lethality, Hepatocellular carcinoma
Abstract
Green synthesis is an effective method for the synthesis of nanoparticles (NPs), so the objective of this project was to synthesis FeNPs using the crude extract from Rhazya stricta, a green synthesis approach. After the synthesis different microscopic as well spectroscopic techniques, including XRD, UV/VIS, SEM and EDX were used to confirm the synthesis as well as size and shape of the synthesized FeNPs. The resulting product was found to be 48.32 nm at 2 mM concentration. The synthesized nanoparticles were then tested for their cytotoxicity using Brine shrimps lethality test as in-vitro and human hepatocellular carcinoma cancer lines huH-1 as in-vivo. The brine shrimps lethality (BSL) assays showed concentration-dependent mortality where maximum (43.3%) mortality was observed at 100 μg. mL-1 and minimum mortality (6.7%) at 5 μg. mL-1 after 48 hrs. The IC50 of the FeNPs against brine shrimps was observed as 137.4 μM while the standard Etopside was 33.4 μM after 48 hrs. During the in-vivo cytotoxicity test against huH-1 has confined the non-toxicity behavior of the synthesized FeNPs, where at a maximum concentration (500μg /ml) the FeNPs revealed 52.5% cell viability with 654.8 μM IC50 values. It is clear from the result that the biosynthesized FeNPs using R. stricta possess less cytotoxic and are effectively safe. The in-vivo cytotoxicity against huH-1 hepatoma cancer cell line also confined the non-toxicity of synthesized FeNPs where at a maximum concentration (500μg /ml) the FeNPs revealed 52.5% cell viability with 654.8 μM IC50 values. It is concluded that bio-mediated FeNPs were effective against cancer cell lines. Therefore, it is suggested that the bio-mediated NPs are safe and eco-friendly with no toxicity and could have overwhelming applications in health sciences.
References
2. Nasreen, I., T. C. Hulkoti and P. Taranath. 2014. Biosynthesis of nanoparticles using microbes. A Review, Collids and surface B. Bioinformatics. 121: 474-483.
3. Rai, M., Birla, S., Ingle, A. P., Gupta, I., Gade, A., Abd-Elsalam, K., ... & Duran, N. (2014). Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnology Reviews, 3(3), 281-309.
4. Villaverde, A. 2010. Nanotechnology, Bionanotechnology and Microbial Cell Factories. J. Microb. Cell. Biol. 9: 53-60.
5. Gao, J and B. Xu. 2009. Applications of Nanomaterials inside Cells. J. Nano. Technol. 4: 37–51.
6. Li, Y., N. Y. Kim, E. J. Lee, W. P. Cai and S. O. Cho. 2006. Synthesis of Silver Nanoparticles by Electron Irradiation of Silver Acetate. Nucl. Instrum. Methods. 251: 425–428.
7. Venkatesan, B., V. Subramanian, Tumala and A. Vellaichamy. 2014. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian. Pac. J. Trop. Med. 7: 294-300.
8. Jain, D., S. Kachhwaha, R. Jain, G. Srivastava and S. L. Kothari. 2010. Novel Microbial Route to Synthesize Silver Nanoparticles Using Spore Crystal Mixture of Bacillus thuringiensis. Ind. J. Experi. Biol. 48: 1152-115.
9. World Health Organization. (2003). WHO guidelines on good agricultural and collection practices [GACP] for medicinal plants. World Health Organization.
10. Storozhuk, L., Besenhard, M. O., Mourdikoudis, S., LaGrow, A. P., Lees, M. R., Tung, L. D., Gavriilidis, A., Thanh, N.T.K. and Thanh, N. T. K. (2021). Stable iron oxide nanoflowers with exceptional magnetic heating efficiency: simple and fast polyol synthesis. ACS Applied Materials & Interfaces, 13(38): 45870-45880.
11. Mishra, R. K., A. K. Zachariah and S. Thomas. 2017. Energy-dispersive X-ray spectroscopy techniques for nanomaterial. In Microscopy Methods in Nanomaterials Characterization (pp. 383-405). Elsevier.
12. Shukla, A., Singha, R. K., Sasaki, T., Prasad, V. V., & Bal, R. (2019). Synthesis of Highly Active Pd Nanoparticles Supported Iron Oxide Catalyst for Selective Hydrogenation and Cross‐Coupling Reactions in Aqueous Medium. Chemistry Select, 4(17): 5019-5032.
13. Ishwarya, R., Tamilmani, G., Al-Ghanim, K. A., Govindarajan, M., Nicoletti, M., & Vaseeharan, B. (2023). Biosynthesis of zinc oxide nanoparticles from molted feathers of Pavo cristatus and their antibiofilm and anticancer activities. Green Processing and Synthesis, 12(1), 20230090.
14. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. (2017). Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chemistry Letters and Reviews, 10(4), 186-201.
15. Albeshri, A., N.A. Baeshen, T.A. Bouback and A.A. Aljaddawi. 2021. A Review of Rhazya stricta Decne Phytochemistry, Bioactivities, Pharmacological Activities, Toxicity, and Folkloric Medicinal Uses. Plants. 10(11): 2508.
16. Yassin, M. T., Al-Otibi, F. O., Al-Askar, A. A., & Alharbi, R. I. (2023). Green synthesis, characterization, and antifungal efficiency of biogenic iron oxide nanoparticles. Applied Sciences, 13(17), 9942.
17. Samarawickrama, K.G.R., U.G.S. Wijayapala and C.A.N. Fernando. 2022. Green Synthesis of Iron Nanoparticles from Long coriander (Eryngium foetidum) Leaves Aqueous Extract.
18. Akhbari, M., Hajiaghaee, R., Ghafarzadegan, R., Hamedi, S., & Yaghoobi, M. (2019). Process optimisation for green synthesis of zero‐valent iron nanoparticles using Mentha piperita. IET nanobiotechnology, 13(2), 160-169.
19. Ghosh, S., Bloch, K., & Webster, T. J. (2022). Bioprospecting of novel algal species with nanobiotechnology. In An Integration of Phycoremediation Processes in Wastewater Treatment (pp. 41-74). Elsevier.
20. Sandupatla, R., Dongamanti, A., & Koyyati, R. (2021). Antimicrobial and antioxidant activities of phytosynthesized Ag, Fe and bimetallic Fe-Ag nanoparticles using Passiflora edulis: A comparative study. Materials Today: Proceedings, 44, 2665-2673.
21. Chauhan, S. and Upadhyay, L.S.B. 2019. Biosynthesis of iron oxide nanoparticles using plant derivatives of Lawsonia inermis (Henna) and its surface modification for biomedical application. Nanotechnology for Environmental Engineering, 4(1): 1-10.
22. Bouafia, A., S.E. Laouini, A. Khelef, M.L. Tedjani and F. Guemari. 2021. Effect of ferric chloride concentration on the type of magnetite (Fe3O4) nanoparticles biosynthesized by aqueous leaves extract of artemisia and assessment of their antioxidant activities. Journal of Cluster Science, 32(4): 1033-1041.
23. Vitta, Y., M. Figueroa, M. Calderon and C. Ciangherotti. 2020. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Materials science for energy technologies, 3, 97-103.
24. Parashar, U. K., P. S. Saxena and A. Srivastava. 2009a. Bioinspired synthesis of silver nanoparticles. Digest. J. Nanomat. Biostruc. (DJNB). 4(1).
25. Rani, M., Yadav, J., Chaudhary, S., & Shanker, U. (2021). An updated review on synthetic approaches of green nanomaterials and their application for removal of water pollutants: Current challenges, assessment and future perspectives. Journal of Environmental Chemical Engineering, 9(6), 106763.
26. Muhammad, W., Ullah, N., Khan, M., Ahmad, W., Khan, M. Q., & Abbasi, B. H. (2019). Why Brine shrimp (Artemia salina) larvae is used as system for nanomaterials? The science of procedure and nano-toxicology: a review. Int. J. Biosci, 14(5), 156-176.
27. Izadiyan, Z., K. Shameli, M. Miyake, H. Hara, S.E.B. Mohamad, K. Kalantari, S.H. Taib and E. Rasouli. 2020. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian Journal of Chemistry. 13(1): 2011-2023.
28. Akifa, B., M. Jeevitha, S. Preetha and S. Rajeshkumar. 2020. Cytotoxicity of Iron Nanoparticles Synthesized Using Dried Ginger. J. Pharma. Res. Int. 32(25): 112-118.
29. El-Ghazali, G.E., K.S. Al-Khalifa, G.A. Saleem and E.M. Abdallah. 2010. Traditional medicinal plants indigenous to Al-Rass province, Saudi Arabia. J. Med. Plants Res. 4(24): 2680-2683.
30. Sudharshan, S. J and M. Dyavaiah. 2021. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae. Biogerontology, 22(1): 81-100.
31. Shosha, N. N. H., S. Elmasry, M. Moawad, S. H. Ismail and M. Elsayed. 2022. Invivo and invitro evaluation of antitumor effects of iron oxide and folate core shell-iron oxide nanoparticles. Brazilian J. Biol. 84.
32. Yang, W., J. Lee, S. Hong, J. Lee and D. W. Han. 2013. Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials. 6: 4689-4706.
33. Namvar, F., H. S. Rahman, R. Mohamad, J. Baharara, M. Mahdavi, E. Amini, M.S. Chartrand and S.K. Yeap. 2014. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomed. 9: 2479-2488.
34. Al-Sahli, S. A., Al-Otibi, F., Alharbi, R. I., Amina, M., & Al Musayeib, N. M. (2024). Silver nanoparticles improve the fungicidal properties of Rhazya stricta decne aqueous extract against plant pathogens. Scientific Reports, 14(1), 1297.
35. Dubey, S. P., Lahtinen, M., & Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45(7), 1065-1071.
36. Ahmad, N., Ricolleau, C., bouar, Y. L., & Alloyeau, D. (2016, November). Shape transformations during the growth of gold nanostructures. In European Microscopy Congress 2016: Proceedings (pp. 161-162). Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA.