MOMORDICA CHARANTIA AND POLYPEPTIDE-P: A MINI REVIEW ON THEIR MEDICINAL POTENTIAL IN DIABETES CARE

Main Article Content

Rabia Naz
Nadia Akram
Fasiha Ilyas
Syeda Aliya Sherazi
Nida Tasneem Khan

Keywords

Polypeptide-P, P-insulin, Diabetes Care, mechanism of polypeptide-P

Abstract

Diabetes militias represents a significant global health concern, with an increase in its prevalence from 171 million in 2000 to an estimated 366 million by 2030. In current era there is a trend of shifting towards alternative and complementary medicine among the diabetic individual. The functional and health endorsing perspectives of those foods are attributed to the bioactive components in them. Among such natural plant based sources Momordica charantia holds a prominent place in traditional medicine for its therapeutic properties especially for treatment diabetes mellitus, cancer, inflammation, and related complications. Ample pre- clinical studies have shown the effect of Momordica charantia usage in controlling ailments like diabetes and cholesterol lowering effects. It is abundant in active components that have a potency for management of diabetes. Among those are p-insulin that is called as plant based insulin. P-Insulin has the ability to enhanced insulin sensitivity, inhibition of glucose absorption, and regenerate the pancreatic beta cells.

Abstract 260 | pdf Downloads 164

References

1. Ahmad, Z., Zamhuri, K. F., Yaacob, A., Siong, C. H., Selvarajah, M., Ismail, A., & Hakim, M. N. (2012). In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules, 17(8), 9631-9640.
2. Ali, H., S. Ahmad, G. Hassan, A. Amin and M. Naeem. 2011. Efficacy of different botanicals against red pumpkin beetle (aulacophora foveicollis) in bitter gourd (Momordica charantia L.) Pak. J. Weed Sci. Res. 17(1): 65-71.
3. Ayoola, P.B., Adeyeye, A., and Onawumi, O.O. 2010. Trace elements and major minerals evaluation of Spondias mombin, Vernonia amygdalina and Momordica charantia leaves. Pakistan J. Nutr. 9(8):755-758.
4. Babish, J.G., Pacioretty, L.M., Bland, J.S., Minich, D.M., Hu, J., and Tripp, M.L. 2010. Antidiabetic screening of commercial botanical products in 3T3-L1 adipocytes and db/db mice. J Med Food. 13(3):535-47.
5. Bangash, J.A., Arif, M., Khan, F., Khan, F., Amin-ur-Rahman, and Hussain, I. 2011. Proximate composition, minerals and vitamins content of selected vegetables grown in Peshawar. J. Chem. Soc. Pak. 33(1):118-122.
6. Biesalski, H.K., L.O. Dragsted, I. Elmadfa, R. Grossklaus, M. Muller, D. Schrenk, P. Walter and P. Weber. 2009. Bioactive compounds: Definition and assessment of activity. Nutrition. 25(11-12):1202-1205.
7. Butt, M.S., and M.T. Sultan. 2011. Ginger and its health claims: molecular aspects. Critical reviews in food science and nutrition, 51(5), 383-393.
8. Chaubey, P., Suvarna, V., Sangave, P. C., & Singh, A. K. (2019). Nutritional management of diabetes—a critical review. Bioactive Food as Dietary Interventions for Diabetes, 289-308.
9. Chen, Q., et al. (2009). Isolation of 14 cucurbitane triterpenoids, kuguacins, from the leaves of Bitter Gourd, as well as six analogues. Phytochemistry, 70(7), 1017-1023.
10. Dasgupta, A., A. Mukherjee and A. Mitra. 2009. Phyto-pharmacology of Momordica charantia linn: a review. J. Global Pharmatechnol. 3(3):7-14.
11. DeFronzo, R. A., Banerji, M., Bray, G. A., Buchanan, T. A., Clement, S., Henry, R. R., ... & Tripathy, D. (2009). Actos Now for the prevention of diabetes (ACT NOW) study. BMC Endocrine Disorders, 9, 1-8.
12. Fasoyiro, S. B., & Oyedele, O. J. (2012). Cyanogenic glycosides in plant foods. African Journal of Biotechnology, 11(42), 9864-9870.
13. Gong, J., Sun, F., Li, Y., Zhou, X., Duan, Z., Duan, F., ... & Shen, J. (2015). Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology, 91, 123-134.
14. Grossmann, M.E., Mizuno, N.K., Dammen, M.L., Schuster, T., Ray, A., and Cleary, M.P. 2009. Eleostearic Acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev. Res. 2(10):879-86.
15. Horax, R., N. Hettiarachchy and P. Chen. 2010. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). J. Agric. Food Chem. 58:4428-4433.
16. Ibrahim, T.A., El-Hefnawy, H.M., and El-Hela, A.A. 2010. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat. Prod. Res. 24(16):1537-45.
17. Kitabchi, A. E., & Nyenwe, E. A. (2006). Hyperglycemic crises in diabetes mellitus: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Endocrinology and Metabolism Clinics, 35(4), 725-751.
18. Kumar, D. S., Sharathnath, K. V., Yogeswaran, P., Harani, A., Sudhakar, K., Sudha, P., & Banji, D. (2010). A medicinal potency of Momordica charantia. International Journal of Pharmaceutical Sciences Review and Research. 1(2):95-100.
19. Liao, P. Y., Lo, H. Y., Liu, I. C., Lo, L. C., Hsiang, C. Y., & Ho, T. Y. (2022). A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/db mice via its novel reno-protective and anti-inflammatory activities. Food & Function, 13(4), 1822-1833.
20. Liu, X.R., Deng, Z.Y., Fan, Y.W., Li, J., and Liu, Z.H. 2010. Mineral elements analysis of Momordica charantia seeds by ICP-AES and fatty acid profile identification of seed oil by GC-MS. Guang Pu Xue Yu Guang Pu Fen Xi. 30(8):2265-8.
21. Lo, H. Y., Ho, T. Y., Lin, C., Li, C. C., & Hsiang, C. Y. (2013). Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor. Journal of Agricultural and Food Chemistry, 61(10), 2461-2468.
22. Lo, H. Y., Li, C. C., Ho, T. Y., & Hsiang, C. Y. (2016). Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chemistry, 204, 298-305.
23. Mesia, G.K., Tona, G.L., Nanga, T.H., Cimanga, R.K., Apers, S., Cos, P., Maes, L., Pieters, L., and Vlietinck, A.J. 2008. Antiprotozoal and cytotoxic screening of 45 plant extracts from Democratic Republic of Congo. J. Ethnopharmacol. 115(3):409-15.
24. Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific journal of tropical biomedicine, 2(4), 320-330.
25. Paul, A. and S.S. Raychaudhuri. 2010. Medicinal uses and molecular identification of two Momordica charantia varieties: A review. Electron. J. Biolo. 6(2):43-51.
26. Poovitha, S., & Parani, M. (2016). In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC complementary and alternative medicine, 16, 1-8.
27. Poovitha, S., & Parani, M. (2016). In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC complementary and alternative medicine, 16, 1-8.
28. Potawale, S.E., R.A. Mantri, K.P. Luniya, U.K. Mehta, Md.W.Md. Sadiq, H.J. Dhalawat and R.S. Deshmukh. 2008. Camellia sinensis: an ethnopharmacological review. Pharmacologyonline 3:1-25.
29. Sharma, S., Tandon, S., Semwal, B., & Singh, K. (2011). Momordica charantia Linn: A comprehensive review on bitter remedy. Journal of Pharmaceutical Research and Opinion, 1(2), 42-47.
30. Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice, 87(1), 4-14.
31. Tayyab, F., Lal, S. S., Mishra, M., & Kumar, U. (2012). A review: Medicinal plants and its impact on diabetes. World J Pharm Res, 1(4), 1019-1046.
32. World Health Organization. (2016). WHO Global report on diabetes.
33. Yuan, X., Gu, X., & Tang, J. (2008). Purification and characterisation of a hypoglycemic peptide from Momordica charantia L. Var. abbreviata Ser. Food Chemistry, 111(2), 415-420