Biochemical Parameter Analysis in Pediatric Patients with Chronic Tonsillitis
Main Article Content
Keywords
Chronic tonsillitis, pediatric patients, biochemical analysis
Abstract
Chronic tonsillitis is a prevalent condition in pediatric pathology, influenced by various risk factors and pathogenic mechanisms. This study examines epidemiological data and biochemical markers related to inflammation, as well as mineral, lipid, and hepatic metabolism, in a cohort of 37 school-age children diagnosed with chronic tonsillitis. Our findings reveal a correlation between chronic tonsillitis and elevated levels of circulating inflammatory cells, transaminases, cholesterol, and triglycerides, alongside decreased levels of procalcitonin, C-reactive protein, calcium, vitamin D, and serum iron. These results underscore the interplay between the analyzed biochemical profile and the systemic factors implicated in the onset and persistence of chronic tonsillitis in children. Understanding these associations may facilitate prognostic optimization for pediatric chronic tonsillitis.
References
2. Ioniță E, Ioniță I, Anghelina F, Ciolofan S, Malin R, Mogoanta C, editors. Craiova: Ed. Medicală Universitară; 2013. Elemente de patologie otorinolaringologică [Google Scholar]
3. Stelter K. Tonsillitis and sore throat in children. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2014;13:Doc07–Doc07. [PMC free article] [PubMed] [Google Scholar]
4. Hoffmann B, Moebus S, Dragano N, Stang A, Möhlenkamp S, Schmermund A, Memmesheimer M, Bröcker-Preuss M, Mann K, Erbel R, Jöckel KH. Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ Health Perspect. 2009;117(8):1302–1308. [PMC free article] [PubMed] [Google Scholar]
5. Grunig G, Marsh LM, Esmaeil N, Jackson K, Gordon T, Reibman J, Kwapiszewska G, Park SH. Perspective: ambient air pollution: inflammatory response and effects on the lung's vasculature. Pulm Circ. 2014;4(1):25–35. [PMC free article] [PubMed] [Google Scholar]
6. Mostafavi N, Vlaanderen J, Chadeau-Hyam M, Beelen R, Modig L, Palli D, Bergdahl IA, Vineis P, Hoek G, Kyrtopoulos SΑ, Vermeulen R. Inflammatory markers in relation to long-term air pollution. Environ Int. 2015;81:1–7. [PubMed] [Google Scholar]
7. Bain BJ, Bates I, Laffan M, editors. Dacie and Lewis Practical Haematology. 12. London: Elsevier; 2017. Approach to the diagnosis and classification of blood cell disorders. [Google Scholar]
8. Kaushansky K, Lichtman MA, Prchal JT, Levi M, Press OW, Burns LJ, Caligiuri MA, editors. Williams Hematology. 9. New York : McGraw-Hill Education; 2016. Lymphocytosis and lymphocytopenia. [Google Scholar]
9. Sakai Y, Kobayashi M. Lymphocyte 'homing' and chronic inflammation. Pathol Int. 2015;65(7):344–354. [PubMed] [Google Scholar]
10. Voehringer D. Recent advances in understanding basophil functions in vivo. F1000Res. 2017;6:1464–1464. [PMC free article] [PubMed] [Google Scholar]
11. Miyake K, Karasuyama H. Emerging roles of basophils in allergic inflammation. Allergol Int. 2017;66(3):382–391. [PubMed] [Google Scholar]
12. Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2018;13:335–349. [PMC free article] [PubMed] [Google Scholar]
13. Ramirez GA, Yacoub MR, Ripa M, Mannina D, Cariddi A, Saporiti N, Ciceri F, Castagna A, Colombo G, Dagna L. Eosinophils from Physiology to Disease: A Comprehensive Review. Biomed Res Int. 2018;2018:9095275–9095275. [PMC free article] [PubMed] [Google Scholar]
14. Parisi L, Gini E, Baci D, Tremolati M, Fanuli M, Bassani B, Farronato G, Bruno A, Mortara L. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders. J Immunol Res. 2018;2018:8917804–8917804. [PMC free article] [PubMed] [Google Scholar]
15. Dutta P, Nahrendorf M. Regulation and consequences of monocytosis. Immunol Rev. 2014;262(1):167–178. [PMC free article] [PubMed] [Google Scholar]
16. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–7218. [PMC free article] [PubMed] [Google Scholar]
17. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–2185. [PubMed] [Google Scholar]
18. Caielli S, Banchereau J, Pascual V. Neutrophils come of age in chronic inflammation. Curr Opin Immunol. 2012;24(6):671–677. [PMC free article] [PubMed] [Google Scholar]
19. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types. Front Physiol. 2018;9:113–113. [PMC free article] [PubMed] [Google Scholar]
20. Gheorghiţă V, Răşcanu A. Procalcitonina: prieten sau duşman în tratamentul antimicrobian. Rev rom boli infect. 2015;(1):13–19. [Google Scholar]
21. Christ-Crain M, Müller B. Biomarkers in respiratory tract infections: diagnostic guides to antibiotic prescription, prognostic markers andmediators. Eur Respir J. 2007;30(3):556–573. [PubMed] [Google Scholar]
22. Santosh UP, Prashanth KB, George NM. Antistreptolysin O Positivity in Chronic Tonsillitis: Rare or Common. Otorhinolaryngol Clin. 2014;6(2):53–54. [Google Scholar]
23. Antonucci R, Locci C, Clemente MG, Chicconi E, Antonucci L. Vitamin D deficiency in childhood: old lessons and current challenges. J Pediatr Endocrinol Metab. 2018;31(3):247–260. [PubMed] [Google Scholar]
24. Mangin M, Sinha R, Fincher K. Inflammation and vitamin D: the infection connection. Inflamm Res. 2014;63(10):803–819. [PMC free article] [PubMed] [Google Scholar]
25. Straub RH, Cutolo M, Pacifici R. Evolutionary medicine and bone loss in chronic inflammatory diseases-A theory of inflammation-related osteopenia. Semin Arthritis Rheum. 2015;45(2):220–228. [PMC free article] [PubMed] [Google Scholar]
26. Stepan D, Dop D, Moroşanu A, Vintilescu B, Niculescu C. Implications of the Iron Deficiency in Lower Tract Respiratory Acute Infections in Toddlers. Curr Health Sci J. 2018;44(4):362–367. [PMC free article] [PubMed] [Google Scholar]
27. Nairz M, Theurl I, Wolf D, Weiss G. Iron deficiency or anemia of inflammation?: Differential diagnosis and mechanisms of anemia of inflammation. Wien Med Wochenschr. 2016;166(13-14):411–423. [PMC free article] [PubMed] [Google Scholar]
28. Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13(3):267–276. [PMC free article] [PubMed] [Google Scholar]
29. Heymann F, Tacke F. Immunology in the liver-from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13(2):88–110. [PubMed] [Google Scholar]
30. Mancuso P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016;5:47–56. [PMC free article] [PubMed] [Google Scholar]
31. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97. [PMC free article] [PubMed] [Google Scholar]
32. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911–919. [PubMed] [Google Scholar]
33. López-González MA, Sánchez B, Mata F, Delgado F. Tonsillar lymphocyte subsets in recurrent acute tonsillitis and tonsillar hypertrophy. Int J Pediatr Otorhinolaryngol. 1998;43(1):33–39. [PubMed] [Google Scholar]
34. Rosenmann E, Rabinowitz R, Schlesinger M. Lymphocyte subsets in human tonsils: the effect of age and infection. Pediatr Allergy Immunol. 1998;9(3):161–167. [PubMed] [Google Scholar]