ENHANCING THE ACTIVITY OF ANTIMICROBIAL AGENTS
Main Article Content
Keywords
antimicrobial resistance, antibiotic,, delivery systems, enhancers, nanoparticles.
Abstract
The rapid adaptability of bacteria to antibiotic-based therapy makes the development of effective medicines for infectious illnesses a complex and continuous process. Nevertheless, well-thought-out activity enhancers, such as antibiotic delivery systems, can boost the efficacy of the drugs now in use, defeating antimicrobial resistance and lowering the likelihood of fostering more bacterial resistance. The activity/delivery enhancers decrease adverse effects, increase tissue and biofilm penetration, improve medication absorption, and enable tailored antibiotic administration. In order to lessen the antibiotic adverse effects and improve formulation stability and effectiveness against bacteria that are resistant to several drugs, this review offers insights into a variety of antibiotic activity enhancers, such as polymer, lipid, and silver-based systems.
References
2. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet. 2022 Feb;399(10325):629–55. doi:10.1016/s0140-6736(21)02724-0
3. Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, et al. Antimicrobial activity and resistance: Influencing factors. Frontiers in Pharmacology. 2017 Jun 13;8. doi:10.3389/fphar.2017.00364
4. Borselli D, Blanchet M, Bolla J, Muth A, Skruber K, Phanstiel O, et al. Motuporamine derivatives as antimicrobial agents and antibiotic enhancers against resistant gram‐negative bacteria. ChemBioChem. 2017 Jan 18;18(3):276–83. doi:10.1002/cbic.201600532
5. Kale SN, Kitture R, Ghosh S, Chopade BA, Yakhmi JV. Nanomaterials as enhanced antimicrobial agent/activity-enhancer for transdermal applications: A Review. Antimicrobial Nanoarchitectonics. 2017;279–321. doi:10.1016/b978-0-323-52733-0.00011-2
6. Kim B, Kim E, Yoo Y-J, Bae H-W, Chung I-Y, Cho Y-H. Phage-derived antibacterials: Harnessing the simplicity, plasticity, and diversity of phages. Viruses. 2019 Mar 18;11(3):268. doi:10.3390/v11030268
7. Jaumaux F, P. Gómez de Cadiñanos L, Gabant P. In the age of synthetic biology, will antimicrobial peptides be the next generation of antibiotics? Antibiotics. 2020 Aug 6;9(8):484. doi:10.3390/antibiotics9080484
8. Fadaka AO, Sibuyi NR, Madiehe AM, Meyer M. Nanotechnology-based delivery systems for antimicrobial peptides. Pharmaceutics. 2021 Oct 26;13(11):1795. doi:10.3390/pharmaceutics13111795
9. Yeh Y-C, Huang T-H, Yang S-C, Chen C-C, Fang J-Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Frontiers in Chemistry. 2020 Apr 24;8. doi:10.3389/fchem.2020.00286
10. Khan H, Shukla RN, Bajpai AK. Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of Cytarabine. Materials Science and Engineering: C. 2016 Apr;61:457–65. doi:10.1016/j.msec.2015.12.085
11. Chatzimitakos TG, Stalikas CD. Qualitative alterations of bacterial metabolome after exposure to metal nanoparticles with bactericidal properties: A comprehensive workflow based on 1H NMR, UHPLC-HRMS, and metabolic databases. Journal of Proteome Research. 2016 Aug 3;15(9):3322–30. doi:10.1021/acs.jproteome.6b00489
12. Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomaterials Research. 2020 Jun 6;24(1). doi:10.1186/s40824-020-00190-7
13. Rezaei N, Hamidabadi HG, Khosravimelal S, Zahiri M, Ahovan ZA, Bojnordi MN, et al. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. International Journal of Biological Macromolecules. 2020 Dec;164:855–62. doi:10.1016/j.ijbiomac.2020.07.011
14. Haktaniyan M, Bradley M. Polymers showing intrinsic antimicrobial activity. Chemical Society Reviews. 2022;51(20):8584–611. doi:10.1039/d2cs00558a
15. Gosecka M, Gosecki M. Antimicrobial polymer-based hydrogels for the intravaginal therapies—engineering considerations. Pharmaceutics. 2021 Sept 2;13(9):1393. doi:10.3390/pharmaceutics13091393
16. Pinilla CM, Lopes NA, Brandelli A. Lipid-based nanostructures for the delivery of natural antimicrobials. Molecules. 2021 Jun 11;26(12):3587. doi:10.3390/molecules26123587
17. Yousefi M, Ehsani A, Jafari SM. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Advances in Colloid and Interface Science. 2019 Aug;270:263–77. doi:10.1016/j.cis.2019.07.005
18. Bonilla-Gameros L, Chevallier P, Sarkissian A, Mantovani D. Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. an Integrated Review. Nanomedicine: Nanotechnology, Biology and Medicine. 2020 Feb;24:102142. doi:10.1016/j.nano.2019.102142
19. Zhang W, Ye G, Liao D, Chen X, Lu C, Nezamzadeh-Ejhieh A, et al. Recent advances of silver-based coordination polymers on antibacterial applications. Molecules. 2022 Oct 23;27(21):7166. doi:10.3390/molecules27217166