DELTAMETHRIN-INDUCED CHANGES IN GROWTH, HEMATOLOGICAL RESPONSES, AND OXIDATIVE STRESS LEVELS IN Gallus gallus domesticus
Main Article Content
Keywords
Deltamethrin, Gallus gallus domesticus, pyrethroid, toxicological impact hematological responses, oxidative stress biomarkers, sustainable pest management
Abstract
Deltamethrin, a type-II pyrethroid and synthetic-cyno pyrethroid, is extensively employed as an insecticide in agricultural and pest management practices. This study aims to investigate the toxicological impact of deltamethrin exposure on Gallus gallus domesticus, focusing on hematological, biochemical, histopathological, and growth parameters. Gallus gallus domesticus (chickens) were divided into four groups, including a control group and three experimental groups exposed to increasing doses of deltamethrin. Hematological parameters, biochemical markers, oxidative stress biomarkers, and histopathological changes in the liver were assessed. The study also examined the influence of deltamethrin on growth parameters, including weight and length. The study revealed significant adverse effects of deltamethrin exposure on various parameters in Gallus gallus domesticus, including hematological, biochemical, histopathological, and growth parameters. Dose-dependent reductions in hemoglobin, red blood cells, and hematocrit, coupled with increased oxidative stress biomarkers and liver enzyme levels, indicated potential toxicity. Histopathological examinations underscored substantial liver damage. Moreover, a dose-dependent impact on growth parameters highlighted significant weight and length reduction in exposed chickens. These findings emphasize the need for use of deltamethrin in poultry farming and the development of sustainable pest management practices to safeguard both poultry health and human consumers.
References
2. Akanni, K. A. (2007). Effect of micro-finance on small scale poultry business in South Western Nigeria. Emirates Journal of Food and Agriculture, 38-47.
3. Akre, C. (2016). The use of pyrethroids, carbamates, organophosphates, and other pesticides in veterinary medicine. Chemical Analysis of Non‐antimicrobial Veterinary Drug Residues in Food, 383-426.
4. Arkle, S., Guy, J. H., & Sparagano, O. (2006). Immunological effects and productivity variation of red mite (Dermanyssus gallinae) on laying hens-implications for egg production and quality. World's Poultry Science Journal, 62(2), 249-257.
5. Arora, D., Siddiqui, M. H., Sharma, P. K., Singh, S. P., Tripathi, A., Mandal, P., ... & Shukla, Y. (2016). Evaluation and physiological correlation of plasma proteomic fingerprints for deltamethrin-induced hepatotoxicity in Wistar rats. Life sciences, 160, 72-83.
6. Axtell, R. C. (1999). Poultry integrated pest management: status and future. Integrated pest management reviews, 4, 53-73.
7. Axtell, R. C., & Arends, J. J. (1990). Ecology and management of arthropod pests of poultry. Annual review of entomology, 35(1), 101-126.
8. Azmi, M. B., & Qureshi, S. A. (2013). Rauwolfia serpentina ameliorates hyperglycemic, haematinic and antioxidant status in alloxan-induced diabetic mice. Journal of Applied Pharmaceutical Science, 3(7), 136-141.
9. Bradbury, S. P., & Coats, J. R. (1989). Comparative toxicology of the pyrethroid insecticides. Reviews of environmental contamination and toxicology, 133-177.
10. Brundage, K. M., & Barnett, J. B. (2010). Immunotoxicity of pesticides. In Hayes' Handbook of Pesticide Toxicology (pp. 483-497). Academic Press.
11. Chandra, N., Jain, N. K., Sondhia, S., & Srivastava, A. B. (2013). Deltamethrin induced toxicity and ameliorative effect of alpha-tocopherol in broilers. Bulletin of environmental contamination and toxicology, 90, 673-678.
12. Del Bosque, C. I. E., Spiller, A., and Risius, A. (2021). Who wants chicken? Uncovering consumer preferences for produce of alternative chicken product methods. Sustainability (Switzerland), 13(5), 1–22.
13. Ding, R., Cao, Z., Wang, Y., Gao, X., Luo, H., Zhang, C., ... & Lu, C. (2017). The implication of p66shc in oxidative stress induced by deltamethrin. Chemico-Biological Interactions, 278, 162-169.
14. Dong, Z. X., Tang, Q. H., Li, W. L., Wang, Z. W., Li, X. J., Fu, C. M., ... & Guo, J. (2022). Honeybee (Apis mellifera) resistance to deltamethrin exposure by modulating the gut microbiota and improving immunity. Environmental Pollution, 314, 120340.
15. Garg, U. K., Pal, A. K., Jha, G. J., & Jadhao, S. B. (2004). Haemato-biochemical and immuno-pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides in broiler chicks. International immunopharmacology, 4(13), 1709-1722.
16. Hamidipoor, F., Pourkhabbaz, H. R., Banaee, M., & Javanmardi, S. (2015). Sub-lethal toxic effects of deltamethrin on blood biochemical parameters of Japanese quail, Coturnix japonica. Toxicological & Environmental Chemistry, 97(9), 1217-1225.
17. Harrington, D. W. J., George, D. R., Guy, J. H., & Sparagano, O. A. E. (2011). Opportunities for integrated pest management to control the poultry red mite, Dermanyssus gallinae. World's Poultry Science Journal, 67(1), 83-94.
18. Harrington, D. W. J., George, D. R., Guy, J. H., & Sparagano, O. A. E. (2011). Opportunities for integrated pest management to control the poultry red mite, Dermanyssus gallinae. World's Poultry Science Journal, 67(1), 83-94.
19. Hussain, A. A., Vinoth, K., & Mani, V. M. (2018). Protective Effect of Vitamin C on Deltamerhrin Induced Oxidative Sress in Human Erythrocytes-An In Vitro Study. International Journal of Science and Humanities, 4(1), 26-39.
20. Hussain, J., Rabbani, I., Aslam, S., and Ahmad, H. A. (2015). An overview of poultry industry in Pakistan. World's poultry science journal, 71(4), 689-700.
21. Hussain, R., Khan, A., Mahmood, F., Rehan, S., & Ali, F. (2014). Clinico-hematological and tissue changes induced by butachlor in male Japanese quail (Coturnix japonica). Pesticide biochemistry and physiology, 109, 58-63.
22. Hussain, S. I., Khwaja, S., Zahid, M., Karim, A., Aziz, Z., Nisar, S., & Abbasi, H. N. (2021). Effect of biosal®, deltamethrin and lambda-cyhalothrin on the activity of GOT, GPT and total protein contents in two fodder pests Hermolaus modestus and Hermolaus ocimumi. Brazilian Journal of Biology, 84.
23. Kumar, A., Sasmal, D., Bhaskar, A., Mukhopadhyay, K., Thakur, A., & Sharma, N. (2016). Deltamethrin‐induced oxidative stress and mitochondrial caspase‐dependent signaling pathways in murine splenocytes. Environmental toxicology, 31(7), 808-819.
24. Magee, C. L., Olanrewaju, H. A., & Purswell, J. L. (2023). Effect of Photoperiod on Physiological Parameters in Broiler Chicks from Placement to 7-days-of-age1, 2. Journal of Applied Poultry Research, 100353.
25. McDevitt, A. D., Mariani, S., Hebblewhite, M., Decesare, N. J., Morgantini, L., Seip, D., ... & Musiani, M. (2009). Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Molecular Ecology, 18(4), 665-679.
26. Oda, S. S., & El-Maddawy, Z. K. (2012). Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Experimental and Toxicologic Pathology, 64(7-8), 813-819.
27. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95(2), 351-358.
28. Olanrewaju, H., Magee, C., Collier, S., and Purswell, J. (2023). Effect of stocking density and antimicrobial inclusion on selected blood physiological variables of broilers grown to 3 kg. Physiology, 38(S1), 5727906.
29. Pimpao, C. T., Zampronio, A. R., & De Assis, H. S. (2007). Effects of deltamethrin on hematological parameters and enzymatic activity in Ancistrus multispinis (Pisces, Teleostei). Pesticide Biochemistry and Physiology, 88(2), 122-127.
30. Raina, A., Yadav, D., Krasinskas, A. M., McGrath, K. M., Khalid, A., Sanders, M., ... & Slivka, A. (2009). Evaluation and management of autoimmune pancreatitis: experience at a large US center. The American journal of gastroenterology, 104(9), 2295.
31. Reddy, K., Jose, S., Fayaz, T., Renuka, N., Ratha, S. K., Kumari, S., & Bux, F. (2024). Microbe-Assisted Bioremediation of Pesticides from Contaminated Habitats. Bioremediation for Sustainable Environmental Cleanup, 109.
32. Shailajan, S., Joshi, M., & Tiwari, B. (2014). Hepatoprotective activity of Parmelia perlata (Huds.) Ach. against CCl4 induced liver toxicity in Albino Wistar rats. Journal of Applied Pharmaceutical Science, 4(2), 070-074.
33. Shakir, S. K., Irfan, S., Akhtar, B., Rehman, S. U., Daud, M. K., Taimur, N., & Azizullah, A. (2018). Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology, 27, 919-935.
34. Sharma, P., Singh, R., & Jan, M. (2014). Dose-dependent effect of deltamethrin in testis, liver, and kidney of Wistar rats. Toxicology international, 21(2), 131.
35. Tauqir, N. A., & Nawaz, H. (2001). Performance and economics of broiler chicks fed on rations supplemented with different levels of sodium bentonite. International Journal of Agriculture And Biology, 3, 149-150.
36. Tewari, A., & Gill, J. P. S. (2014). Assessment of hemato-biochemical parameters on exposure to low level of deltamethrin in mouse model. Veterinary World, 7(3).
37. Tuzmen, N., Candan, N., Kaya, E., & Demiryas, N. (2008). Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell biochemistry and function, 26(1), 119-124.
38. Valceschini, E. (2006). Poultry meat trends and consumer attitudes. Proceedings of the XII European Poultry Conference, August, 1–10. https://www.cabi.org/Uploads/animal-science/worlds-poultryscience-association/WPSA-italy-2006/10916.pdf
39. Wedin, G. P., & Benson, B. E. (2003). Treatment of Pesticide Poisoning. Pesticide Toxicology and International Regulation, 473-498.
40. Yousef, M. I., Awad, T. I., & Mohamed, E. H. (2006). Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E. Toxicology, 227(3), 240-247.