ASSOCIATION OF PLASMA VISFATIN AND OXIDATIVE STRESS MARKERS IN TYPE 2 DIABETES PATIENTS

Main Article Content

Preeti Sharma
Shreya Nigoshkar

Keywords

Visfatin, Oxidative stress biomarkers, diabetes mellitus

Abstract

Abstract:  Metabolic disorder due to type 2 diabetes mellitus in the diabetic patients increases the level of free radicals, which leads to oxidative stress in patients. It affects the insulin secretion and other adipokines, which leads to diabetic complications. The study aims to find out the relationship between plasma Visfatin, and oxidative stress markers in type 2 diabetes mellitus (T2DM) patients. A total of 150 patients with T2DM who had been diagnosed and 150 healthy control participants were enrolled in Index Medical College Hospital and Research Centre, Indore, it was a case-control study and they were matched for age and sex ratio. Glycated HbA1c, glycemic and liver profile, kidney profile as well as certain oxidative stress markers Lipid peroxidation (LPO), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx),  Glutathione reductase (GR), Reduce Glutathione reductase (GSH), Protein carbonyl and Visfatin were estimated. The observe results were presented in mean ± SD. Controls and cases were compared using “t-test” and ANOVA. The correlation were determined by the person’s correlation “p” value <0.0001considered significant. The data observed shows a clear significance difference between cases and controls in the association of Visfatin and oxidative markers .The elevated Visfatin p=<0.0001) values show a contrary down regulation of oxidative stress contour markers such as Catalase, Glutathione, Glutathione peroxidase, Superoxide dismutase and hence depicting that there may be a relation of Visfatin with oxidative stress

Abstract 43 | pdf Downloads 29

References

1. Tabish, S. A. Is Diabetes Becoming the Biggest Epidemic of the Twenty-first Century. Int J Health Sci (Qassim). 2007, Jul; 1(2):V-VIII.
2. Amo, A. F; McCarty D.J.; Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997, 14 Suppl 5:S1-85. PMID: 9450510.
3. Scanlon, P. H.; Aldington, S. J. ; Stratto, I. M. Epidemiological issues in diabetic retinopathy. Middle East Afr J Ophthalmol, 2013, Oct-Dec; 20(4):293-300.
4. Sirda, M. M., Readin, N. S. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin Genet. 2020 Dec, 98(6):525-547.
5. Berbudi, A., Rahmadika, N., Tjahjadi, I. , Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 202, 16(5), 442-449.
6. Turk Wensveen, T.; Gašparini D., Rahelić, D., Wensveen, F. M. Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Res Clin Pract. 2021 Feb;172:108637
7. Galicia-Garci, U.; Benito-Vicente, A.; Jebar, S. Larrea-Sebal, A.; Siddiqi, H.; Uribe, K. B.; Ostolaza, H.; Martín, C., Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020 Aug 30;21(17):6275.
8. Roden, M.; Shulma, G. I. The integrative biology of type 2 diabetes. Nature. 2019; 576, 51–60. doi: 10.1038/s41586-019-1797-1798.
9. Stumvol, M.; Goldstei, B. J.; van Haefte, T. W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 2005, 365, 1333–1346.
10. Weyer, C., Bogardus, C., Mott, D. M.; Pratle, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Investig. 1999, 104, 787–794
11. . Chatterjee, S.; Khunt, K.; Davie, M. J. Type 2 diabetes. Lancet. 2017, 389, 2239–2251.
12. Kan, Y. S.; Song, H. K.; Lee, M. H.; Ko, G.; Han, J.Y.; Han, S.Y.; Han, K. H.; Kim, H. K., Cha, D. R. Visfatin is upregulated in type-2 diabetic rats and targets renal cells. Kidney Int. 2010, Jul 78(2), 170-181.
13. Heo, Y. J.; Choi, S. E., Jeon, J. Y.; Han, S. J.; Kim, D. J.; Kang, Y.; Lee, K.W.; Kim, H. J. Visfatin Induces Inflammation and Insulin Resistance via the NF-κB and STAT3 Signaling Pathways in Hepatocytes. J Diabetes Res. 2019, Jul 17, 2019:4021623.
14. Sethi JK, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? Trends Mol Med. 2005 Aug; 11(8):344-347.
15. Adeghat, E.; Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008, 15(18), 1851-1862
16. Saddi-Rosa, P., Oliveira, C. S., Giuffrida, F. M.; Reis, A. F. Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetol Metab Syndr. 2010 Mar 26;2, 21.
17. Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ, Lee YJ. Elevated plasma level of Visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006 Jan; 91(1):295-9.
18. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005 Jan 21;307(5708):426-30.
19. Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev. 2013 Oct;24(5):433-442.
20. Dakroub A, Nasser SA, Kobeissy F, Yassine HM, Orekhov A, Sharifi-Rad J, Iratni R, El-Yazbi AF, Eid AH. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J Cell Physiol. 2021 Sep;236 (9):6282-6296.
21. Mashhad Taraqi AS, Tehranian N, Roudbaneh SP, Esmaeilzadeh MS, Kazemnejad A, Aghoozi MF, Yousefi S. Visfatin as a predictor for growth of fetus and infant. Turk J Obstet Gynecol. 2018 Jun;15(2):80-86
22. Abdalla MMI. Role of Visfatin in obesity-induced insulin resistance. World J Clin Cases. 2022 Oct 26;10(30):10840-10851.
23. Sethi JK. Is PBEF/Visfatin/Nampt an authentic adipokine relevant to the metabolic syndrome? Curr Hypertens Rep. 2007 Mar;9(1):33-8.
24. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul;4(8):118-126.
25. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013 Mar 27;4:37.
26. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015 Apr 15;6(3):456-480.
27. Wondmkun YT. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab Syndr Obes. 2020 Oct 9;13:3611-3616.
28. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012 Feb;12(1):5-18.
29. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9-19
30. harifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L,et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020 Jul 2;11:694.
31. Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021, Jun;169:317-342.
32. Sinha, K.A. Colorimetric Assay of Catalase. Analytical Biochemistry, 1972, 47, 389-394.
33. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984 Apr;21(2):130-132.
34. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973 Feb 9;179(4073):588-590.
35. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159-3165.
36. Hazelton, G A Lang, C A Mech Ageing Dev, 1985, 29(1):71-81.
37. Stocks J and Dormandy T L Autoxidation of red cell lipids induced by hydrogen peroxide; Br. J. Haemotol. 1971, 20, 95-111.
38. Levine ,R L, Williams, J A, Stadtman, E R Shacter, E, Methods Enzymol 1994, 233, 346-57.
39. Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes. 2014 Aug 15;5(4):444-470
40. Romuk E, Wojciechowska C, Jacheć W, Nowak J, Niedziela J, Malinowska-Borowska J, Głogowska-Gruszka A, Birkner E, Rozentryt P. Comparison of Oxidative Stress Parameters in Heart Failure Patients Depending on Ischaemic or Nonischaemic Aetiology. Oxid Med Cell Longev. 2019 Sep 17;2019:7156038.
41. Agan V, Celik H, Eren MA, Agan FZ, Erel O, Neselioglu S, Koyuncu I, Gonel A. An Investigation of Oxidative Stress and Thiol/Disulphide Homeostasis in Graves' Disease. Medicina (Kaunas). 2019 Jun 14;55(6):275.
42. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int J Mol Sci. 2020 May 18;21(10):3570.
43. Dakroub A, A Nasser S, Younis N, Bhagani H, Al-Dhaheri Y, Pintus G, Eid AA, El-Yazbi AF, Eid AH. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells. 2020 Nov 9;9(11):2444.
44. Sharma, P.; Nigoshkar, S. Evaluation of Oxidative Stress Biomarkers In Type 2 Diabetes Patients, Eur. Chem. Bull. 2022, 11 (Regular Issue 1), 211–215