ENHANCING NURSING TRAINING AND PROTOCOLS FOR EFFECTIVE WOUND CARE IN PRIMARY HEALTHCARE SETTINGS

Main Article Content

Jehanzeb Khan
Shafie Muse Tahir
Mbony Joshua C
Dr. Rabbyya Kausar
Syed Muhammad Abbass
Nosheen Akhtar

Keywords

Wound Healing, Chronic Wounds, Ideal Healing, Traditional Healing, Moist Healing

Abstract

Introduction: Chronic wound treatment poses a significant challenge, consuming substantial time and resources for medical and nursing staff. A multitude of materials are available for assistance, necessitating a careful selection process to optimize efficacy and streamline treatments. The cornerstone of this selection process is a comprehensive assessment of both the patient's overall condition and the specific wound characteristics.


Background: The market offers a diverse array of materials designed to aid in chronic wound care. However, the efficacy of these materials is contingent upon the judicious selection guided by a thorough understanding of the patient's health status and the unique attributes of the wound. This underscores the importance of a systematic approach to material selection.


Objective: The primary objective of this bulletin is to provide guidance to healthcare professionals in the strategic selection of materials for chronic wound care. By offering insights into the importance of patient and wound assessment, this bulletin aims to enhance the overall effectiveness of treatment strategies.


Methods: The bulletin emphasizes a methodical approach, encouraging healthcare practitioners to invest time in a comprehensive assessment of both the patient and the wound. By synthesizing information from these assessments, practitioners can make informed decisions in selecting materials for chronic wound care.


Results: The outcomes of a meticulous patient and wound assessment serve as the foundation for optimal material selection. By employing this approach, healthcare professionals can enhance the efficiency of treatments and, consequently, contribute to improved patient outcomes.


Discussion: The discussion section delves into the significance of strategic material selection in chronic wound care. It highlights the impact of an informed decision-making process on treatment efficacy, emphasizing the importance of a holistic approach in caring for chronic wounds.


Conclusion: In conclusion, this bulletin serves as a valuable resource for medical and nursing staff engaged in chronic wound care. By advocating for a methodical approach to material selection based on thorough patient and wound assessments, it aims to empower healthcare professionals to optimize treatment outcomes and resource utilization

Abstract 343 | pdf Downloads 123

References

1. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes—2024. (2024). Diabetes Care, 47(Supplement_1), S231-S243.
2. Bebiano, L. B., Lourenço, B. N., Granja, P. L., & Pereira, R. F. (2024). Hydrogels as dynamic covalent networks for skin repair Hydrogels for Tissue Engineering and Regenerative Medicine (pp. 605-624): Elsevier.
3. Cereda, E., Veronese, N., & Caccialanza, R. (2024). Nutritional therapy in chronic wound management for older adults. Current Opinion in Clinical Nutrition & Metabolic Care, 27(1), 3-8.
4. Chen, A. C.-Y., Lu, Y., Hsieh, C.-Y., Chen, Y.-S., Chang, K.-C., & Chang, D.-H. (2024). Advanced Biomaterials and Topical Medications for Treating Diabetic Foot Ulcers: A Systematic Review and Network Meta-Analysis. Advances in wound care, 13(2), 97-113.
5. de Sousa Afonso, M., Lopes, L. P. N., Ferreira, M. M., da Cruz Ribeiro, R. A., dos Santos Monteiro, L., dos Santos Matos, A. P., . . . de Abreu, L. C. L. (2024). Bacaba, Pracaxi and Uxi Oils for Therapeutic Purposes: A Scoping Review. Journal of Oleo Science, 73(1), 11-23.
6. Dong, D., Lv, X., Jiang, Q., Zhang, J., Gu, Z., Yu, W., . . . Cheng, Z. (2024). Multifunctional electrospun polycaprolactone/chitosan/hEGF/lidocaine nanofibers for the treatment of 2-stage pressure ulcers. International journal of biological macromolecules, 256, 128533.
7. Fani, N., Moradi, M., Zavari, R., Parvizpour, F., Soltani, A., Arabpour, Z., & Jafarian, A. (2024). Current advances in wound healing and regenerative medicine. Current stem cell research & therapy, 19(3), 277-291.
8. Gefen, A., Alves, P., Beeckman, D., Cullen, B., Lázaro-Martínez, J. L., Lev-Tov, H., . . . Swanson, T. (2024). How should clinical wound care and management translate to effective engineering standard testing requirements from foam dressings? Mapping the existing gaps and needs. Advances in wound care, 13(1), 34-52.
9. Golebiowska, A. A., Intravaia, J. T., Sathe, V. M., Kumbar, S. G., & Nukavarapu, S. P. (2024). Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioactive Materials, 32, 98-123.
10. Gültekin, H. E., Yaşayan, G., Bal-Öztürk, A., Bigham, A., Simchi, A. A., Zarepour, A., . . . Zarrabi, A. (2024). Advancements and applications of upconversion nanoparticles in wound dressings. Materials Horizons.
11. Hashimoto, S., Nagoshi, N., Nakamura, M., & Okano, H. (2024). Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regeneration Research, 19(4), 818-824.
12. He, Y., Cen, Y., & Tian, M. (2024). Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. Journal of Materials Chemistry B.
13. Kar, A., Giri, L., Almalki, W. H., Singh, S., Sahebkar, A., Kesharwani, P., & Dandela, R. (2024). Conclusion and Future Prospective of silver nanoparticles Silver Nanoparticles for Drug Delivery (pp. 433-452): Elsevier.
14. Kaur, D., & Purwar, R. (2024). Nanotechnological advancement in artificial intelligence for wound care Nanotechnological Aspects for Next-Generation Wound Management (pp. 281-318): Elsevier.
15. Li, H., Mu, M., Chen, B., Zhou, L., Han, B., & Guo, G. (2024). MXene-based nanomaterials for antibacterial and wound healing. Materials Research Letters, 12(2), 67-87.
16. Li, X., Peng, X., Zoulikha, M., Boafo, G. F., Magar, K. T., Ju, Y., & He, W. (2024). Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduction and Targeted Therapy, 9(1), 1.
17. Liu, S., Peng, D., He, S., Li, X., Wu, Y., Liu, X., . . . Cai, K. (2024). Ternary low-temperature phototherapy nano-systems for the treatment of diabetic wounds. Journal of Materials Chemistry B.
18. Liu, Y., Li, Z., Li, W., Chen, X., Yang, L., Lu, S., . . . Zhang, X. (2024). Discovery of β-sitosterol's effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages. International Immunopharmacology, 126, 111283.
19. Ma, S., Ding, Q., Xia, G., Li, A., Li, J., Sun, P., . . . Liu, W. (2024). Multifunctional biomaterial hydrogel loaded with antler blood peptide effectively promotes wound repair. Biomedicine & Pharmacotherapy, 170, 116076.
20. Mandakhbayar, N., Ji, Y., El-Fiqi, A., Patel, K. D., Yoon, D. S., Dashnyam, K., . . . Kim, T.-H. (2024). Double hits with bioactive nanozyme based on cobalt-doped nanoglass for acute and diabetic wound therapies through anti-inflammatory and pro-angiogenic functions. Bioactive Materials, 31, 298-311.
21. Moreira, T. D., Martins, V. B., da Silva Júnior, A. H., Sayer, C., de Araújo, P. H. H., & Immich, A. P. S. (2024). New insights into biomaterials for wound dressings and care: Challenges and trends. Progress in Organic Coatings, 187, 108118.
22. Mukhopadhyay, S., To, K. K., Liu, Y., Bai, C., & Leung, S. S. (2024). A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomaterials Science.
23. Nandhini, J., Karthikeyan, E., & Rajeshkumar, S. (2024). Nanomaterials for wound healing: Current status and futuristic frontier. Biomedical Technology, 6, 26-45.
24. Nangare, S., Pantwalawalkar, J., Jadhav, N., Khan, Z., Patil, G., Mahajan, M., . . . Patil, P. (2024). Nanotherapeutics for diabetic foot ulcer and wound healing using metal nanocomposites Metal Nanocomposites in Nanotherapeutics for Oxidative Stress-Induced Metabolic Disorders (pp. 190-210): CRC Press.
25. Ndlovu, S. P., Alven, S., Hlalisa, K., & Aderibigbe, B. A. (2024). Cellulose Acetate-Based Wound Dressings Loaded with Bioactive Agents: Potential Scaffolds for Wound Dressing and Skin Regeneration. Current Drug Delivery.
26. Pallikkunnel, M. L., Joseph, T. M., Haponiuk, J. T., & Thomas, S. (2024). Alginate-Based Wound-Healing Dressings Foundation and Growth of Macromolecular Science (pp. 323-351): Apple Academic Press.
27. Parimi, J. L. (2024). Role of scaffolds in wound care and management Nanotechnological Aspects for Next-Generation Wound Management (pp. 169-192): Elsevier.
28. Sharma, A., Shambhwani, D., Pandey, M. M., Pandey, S., & Kumar, D. (2024). Nanoparticle-based materials for wound management Nanotechnological Aspects for Next-Generation Wound Management (pp. 131-147): Elsevier.
29. Singh, M., Dabas, H., Rehman, A., & Solanki, P. R. (2024). Skin tissue engineering based on nanotechnology for wound management Nanotechnological Aspects for Next-Generation Wound Management (pp. 233-244): Elsevier.
30. Singh, M., Yadav, R., Rehman, A., & Solanki, P. R. (2024). Wound healing and management Nanotechnological Aspects for Next-Generation Wound Management (pp. 55-69): Elsevier.
31. Singh, P., Singh, K. R., Yadav, A. K., Singh, J., Solanki, P. R., & Singh, R. P. (2024). Carbon-based nanostructured materials for effective strategy in wound management Nanotechnological Aspects for Next-Generation Wound Management (pp. 193-218): Elsevier.
32. Tabriz, A. G., & Douroumis, D. (2024). 3D printing technologies for skin wound healing applications From Current to Future Trends in Pharmaceutical Technology (pp. 177-214): Elsevier.
33. Verma, D., Yadav, A. K., & Solanki, P. R. (2024). Nanocomposites applications in wound management Nanotechnological Aspects for Next-Generation Wound Management (pp. 149-167): Elsevier.
34. Wang, X., Li, R., & Zhao, H. (2024). Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomedicine & Pharmacotherapy, 170, 116035.
35. Xiang, H., Zhao, W., Jiang, K., He, J., Chen, L., Cui, W., & Li, Y. (2024). Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioactive Materials, 33, 506-531.
36. Ye, G., Jimo, R., Lu, Y., Kong, Z., Axi, Y., Huang, S., . . . Xiao, Y. (2024). Multifunctional natural microneedles based methacrylated Bletilla striata polysaccharide for repairing chronic wounds with bacterial infections. International journal of biological macromolecules, 254, 127914.
37. Zhang, X., Wang, Y., Gao, Z., Mao, X., Cheng, J., Huang, L., & Tang, J. (2024). Advances in wound dressing based on electrospinning nanofibers. Journal of Applied Polymer Science, 141(1), e54746.
38. Zhou, L., Guo, S., Dong, Z., Liu, P., Shi, W., Shen, L., & Yin, J. (2024). Electron irradiation of zein protein-loaded nano CaO2/CD for enhancing infectious diabetic wounds with adaptive hydrophobicity-to-hydrophilicity. Materials Today Advances, 21, 100458.

Most read articles by the same author(s)