A STUDY ON EXTENDED-SPECTRUM β-LACTAMASE GENES FROM CLINICALLY ISOLATED GRAM-NEGATIVE BACTERIA IN BAHAWALPUR
Main Article Content
Keywords
ESBLs, gram negative bacteria, disk diffusion method, (PCR), CTXM, TEM
Abstract
The extended-spectrum β-lactamase (ESBL) genes have become more common, increasing the prevalence of multidrug-resistant gram-negative bacteria (GNBs) found in clinical patients. This cross-sectional study aimed to find the antimicrobial susceptibility of clinically isolated GNBs and their correlations with ESBL genes. A total of 140 samples were collected without any age discrimination and proceeded for their growth on culture media, gram staining, and biochemical characterization. Antimicrobial susceptibility testing was done by the Kirby-Baur disk diffusion method and PCR was employed for ESBLs associated genes (blaCTX-M, blaSHV, blaOXA, blaTEM). Out of 140 samples, the majority (60%) were GNBs, with K. Pneumoniae being the most prevalent (38.1%), followed by E. coli (29.8%), P. aeruginosa (15.5%), Proteus spp (10.7%), and Citrobacter spp (6%). These GNBs were resistant to various antibiotics, including cefixime (70.2%), amoxicillin (50%), cefoperazone (21.4%), imipenem (17.9%), ceftaroline (89%), gentamicin (72.6%), tobramycin (64.3%), amikacin (52.4%). Individual ESBL gene frequencies were blaCTX-M (40.5%), blaTEM (27%), blaOXA (21.6%), and blaSHV (10.8%). Species-wise, ESBLs‐producing genes blaCTX-M, and blaTEM were most frequent in K. Pneumoniae (13.5%) and E. coli (27%) while blaOXA in P. aeruginosa (13.5%) and blaSHV in Proteus spp (2.7%). In conclusion, blaCTX-M was the main gene associated with ESBL production in resistance clinical isolates followed by blaTEM, blaOXA, and blaSHV genes. To avoid resistance isolates, hospitals must implement infection control and antibiotic stewardship plans.
References
[2] Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy 1995;39:1211–33. https://doi.org/10.1128/AAC.39.6.1211.
[3] Ruppé É, Woerther P-L, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Annals of Intensive Care 2015;5:1–15. https://doi.org/10.1186/s13613-015-0061-0.
[4] Sutton SS. What are extended-spectrum beta-lactamases? Jaapa 2014;27:14–7. https://doi.org/10.1097/01.JAA.0000443810.42907.ec.
[5] Chong Y, Shimoda S, Yakushiji H, Ito Y, Miyamoto T, Kamimura T, et al. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. Journal of Medical Microbiology 2013;62:1038–43. https://doi.org/10.1099/jmm.0.059279-0.
[6] Kassakian SZ, Mermel LA. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria. Antimicrob Resist Infect Control 2014;3:9. https://doi.org/10.1186/2047-2994-3-9.
[7] Aidara-Kane A, Angulo FJ, Conly JM, Minato Y, Silbergeld EK, McEwen SA, et al. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob Resist Infect Control 2018;7:7. https://doi.org/10.1186/s13756-017-0294-9.
[8] Datta N, Kontomichalou P. Penicillinase Synthesis Controlled by Infectious R Factors in Enterobacteriaceae. Nature 1965;208:239–41. https://doi.org/10.1038/208239a0.
[9] Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983;11:315–7. https://doi.org/10.1007/BF01641355.
[10] Philippon A, Labia R, Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1989;33:1131–6. https://doi.org/10.1128/AAC.33.8.1131.
[11] Livermore DM. Defining an extended-spectrum β-lactamase. Clinical Microbiology and Infection 2008;14:3–10. https://doi.org/10.1111/j.1469-0691.2007.01857.x.
[12] Rp A. A standard numbering scheme for the Class A β-lactamases. Biochem J 1991;276:269–72. https://doi.org/10.11434/kyorinmed.35.205.
[13] Kayastha K, Dhungel B, Karki S, Adhikari B, Banjara MR, Rijal KR, et al. Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella Species in Pediatric Patients Visiting International Friendship Children’s Hospital, Kathmandu, Nepal. Infect Dis (Auckl) 2020;13:1178633720909798. https://doi.org/10.1177/1178633720909798.
[14] Adamski CJ, Cardenas AM, Brown NG, Horton LB, Sankaran B, Prasad BVV, et al. Molecular Basis for the Catalytic Specificity of the CTX-M Extended-Spectrum β-Lactamases. Biochemistry 2015;54:447–57. https://doi.org/10.1021/bi501195g.
[15] Shaikh S, Fatima J, Shakil S, Rizvi SMohdD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences 2015;22:90–101. https://doi.org/10.1016/j.sjbs.2014.08.002.
[16] Balkhed ÅÖ, Tärnberg M, Monstein H-J, Hällgren A, Hanberger H, Nilsson LE. High frequency of co-resistance in CTX-M-producing Escherichia coli to non-beta-lactam antibiotics, with the exceptions of amikacin, nitrofurantoin, colistin, tigecycline, and fosfomycin, in a county of Sweden. Scandinavian Journal of Infectious Diseases 2013;45:271–8. https://doi.org/10.3109/00365548.2012.734636.
[17] Lahlaoui H, Ben Haj Khalifa A, Ben Moussa M. Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Médecine et Maladies Infectieuses 2014;44:400–4. https://doi.org/10.1016/j.medmal.2014.03.010.
[18] Asgharzadeh Kangachar S, Mojtahedi A. The presence of extended-spectrum β-lactamase as a risk factor for MDR in clinical isolation of Escherichia coli. Trop Biomed 2017;34:98–109.
[19] Kapil A. The challenge of antibiotic resistance: need to contemplate. Indian J Med Res 2005;121:83–91.
[20] Idrees MM, Saeed A. Genetic and Molecular Mechanisms of Multidrug-Resistance in Uropathogens and Novel Therapeutic Combat. In: Ahmed S, Chandra Ojha S, Najam-ul-Haq M, Younus M, Hashmi MZ, editors. Biochemistry of Drug Resistance, Cham: Springer International Publishing; 2021, p. 505–38. https://doi.org/10.1007/978-3-030-76320-6_20.
[21] Moo C-L, Yang S-K, Yusoff K, Ajat M, Thomas W, Abushelaibi A, et al. Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR. Current Drug Discovery Technologies 2020;17:430–47. https://doi.org/10.2174/1570163816666190304122219.
[22] Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B, Underwood A, et al. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nat Commun 2021;12:2879. https://doi.org/10.1038/s41467-021-23091-2.
[23] Haider MH, McHugh TD, Roulston K, Arruda LB, Sadouki Z, Riaz S. Correction: Detection of carbapenemases blaOXA48-blaKPC-blaNDM-blaVIM and extended-spectrum-β-lactamase blaOXA1-blaSHV- blaTEM genes in Gram-negative bacterial isolates from ICU burns patients. Ann Clin Microbiol Antimicrob 2022;21:34. https://doi.org/10.1186/s12941-022-00519-1.
[24] Idrees MM, Rimsha R, Idrees MD, Saeed A. Antimicrobial Susceptibility and Genetic Prevalence of Extended-Spectrum β-Lactamases in Gram-Negative Rods Isolated from Clinical Specimens in Pakistan. Antibiotics 2023;12:29. https://doi.org/10.3390/antibiotics12010029.
[25] Rohner P, Pepey B, Auckenthaler R. Advantage of combining resin with lytic BACTEC blood culture media. Journal of Clinical Microbiology 1997;35:2634–8. https://doi.org/10.1128/jcm.35.10.2634-2638.1997.
[26] Sánchez-Romero MI, García-Lechuz Moya JM, González López JJ, Orta Mira N. Collection, transport and general processing of clinical specimens in Microbiology laboratory. Enfermedades Infecciosas y Microbiologia Clinica (English Ed) 2019;37:127–34. https://doi.org/10.1016/j.eimce.2017.12.005.
[27] Cheesbrough M. District Laboratory Practice in Tropical Countries, Part 2. Cambridge University Press; 2005.
[28] Coico R. Gram Staining. Current Protocols in Microbiology 2006;00:A.3C.1-A.3C.2. https://doi.org/10.1002/9780471729259.mca03cs00.
[29] Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. Journal of Clinical Microbiology 2021;59:10.1128/jcm.00213-21. https://doi.org/10.1128/jcm.00213-21.
[30] Ahmed* OB, Dablool AS. Quality Improvement of the DNA extracted by boiling method in Gram negative bacteria. IJB 2017;6:5347. https://doi.org/10.21746/ijbio.2017.04.004.
[31] Schlesinger J, Navon-Venezia S, Chmelnitsky I, Hammer-Münz O, Leavitt A, Gold HS, et al. Extended-Spectrum Beta-Lactamases among Enterobacter Isolates Obtained in Tel Aviv, Israel. Antimicrobial Agents and Chemotherapy 2005;49:1150–6. https://doi.org/10.1128/aac.49.3.1150-1156.2005.
[32] Pallecchi L, Malossi M, Mantella A, Gotuzzo E, Trigoso C, Bartoloni A, et al. Detection of CTX-M-Type β-Lactamase Genes in Fecal Escherichia coli Isolates from Healthy Children in Bolivia and Peru. Antimicrobial Agents and Chemotherapy 2004;48:4556–61. https://doi.org/10.1128/aac.48.12.4556-4561.2004.
[33] Colom K, Pérez J, Alonso R, Fernández-Aranguiz A, Lariño E, Cisterna R. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA–1 genes in Enterobacteriaceae. FEMS Microbiology Letters 2003;223:147–51. https://doi.org/10.1016/S0378-1097(03)00306-9.
[34] Weinstein MP, Lewis JS. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, Organization, Functions, and Processes. Journal of Clinical Microbiology 2020;58:10.1128/jcm.01864-19. https://doi.org/10.1128/jcm.01864-19.
[35] Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control 2019;8:39. https://doi.org/10.1186/s13756-019-0488-4.
[36] Prasad V, Sridhar V. Diversity Studies in Yellow Pericarp Sorghum [Sorghum bicolor (L.) Moench] Genotypes for Yield Attributes. International Journal of Current Microbiology and Applied Sciences 2019;8:361–6. https://doi.org/10.20546/ijcmas.2019.812.048.
[37] Ahmed Y, ahmed ME, Khalid K, Mohamed B, Elhag K. Phenotype and genotype of extended-spectrum-beta-lactamases in Sudanese patients with UTI 2016;3:2354–4082.
[38] Hijazi SM, Fawzi MA, Ali FM, Abd El Galil KH. Prevalence and characterization of extended-spectrum beta-lactamases producing Enterobacteriaceae in healthy children and associated risk factors. Ann Clin Microbiol Antimicrob 2016;15:3. https://doi.org/10.1186/s12941-016-0121-9.
[39] Bilal H, Hameed F, Khan MA, Khan S, Yang X, Rehman TU. Detection of mcr-1 Gene in Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae From Human Urine Samples in Pakistan. Jundishapur J Microbiol 2020;13. https://doi.org/10.5812/jjm.96646.
[40] Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL Production Among E. coli and Klebsiella spp. Causing Urinary Tract Infection: A Hospital Based Study. Open Microbiol J 2017;11:23–30. https://doi.org/10.2174/1874285801711010023.
[41] Batool A, Baig H, Qamar MU. Extended spectrum--lactamase producing Escherichia coli and Klebsiella pneumoniae causing urinary tract infection. AJMR 2016;10:1775–8. https://doi.org/10.5897/AJMR2015.7895.
[42] Ejaz H, Younas S, Abosalif KOA, Junaid K, Alzahrani B, Alsrhani A, et al. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLOS ONE 2021;16:e0245126. https://doi.org/10.1371/journal.pone.0245126.
[43] Mathai AS, Phillips A, Kaur P, Isaac R. Incidence and attributable costs of ventilator-associated pneumonia (VAP) in a tertiary-level intensive care unit (ICU) in northern India. Journal of Infection and Public Health 2015;8:127–35. https://doi.org/10.1016/j.jiph.2014.07.005.
[44] Salvia T, Dolma KG, Dhakal OP, Khandelwal B, Singh LS. Phenotypic Detection of ESBL, AmpC, MBL, and Their Co-occurrence among MDR Enterobacteriaceae Isolates. J Lab Physicians 2022;14:329–35. https://doi.org/10.1055/s-0042-1744239.
[45] Rahmani A, Meradi L, Piris R. Molecular characterization of the whole genome in clinical multidrug-resistant strains of Klebsiella pneumoniae. The Journal of Infection in Developing Countries 2023;17:59–65. https://doi.org/10.3855/jidc.17168.
[46] Casellas JM, Goldberg M. Incidence of strains producing extended spectrum β-lactamases in Argentina. Infection 1989;17:434–6. https://doi.org/10.1007/BF01645567.
[47] Aksaray S group: S, DokuzoĞuz B, Güvener E, Yücesoy M, YuluĞ N, Kocagöz S, et al. Surveillance of antimicrobial resistance among Gram-negative isolates from intensive care units in eight hospitals in Turkey. Journal of Antimicrobial Chemotherapy 2000;45:695–9. https://doi.org/10.1093/jac/45.5.695.
[48] Sid Ahmed MA, Bansal D, Acharya A, Elmi AA, Hamid JM, Sid Ahmed AM, et al. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrobial Resistance and Infection Control 2016;5:4. https://doi.org/10.1186/s13756-016-0103-x.
[49] Thomson KS, Sanders CC. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 1992;36:1877–82. https://doi.org/10.1128/AAC.36.9.1877.
[50] Bullens M, de Cerqueira Melo A, Raziq S, Lee J, Khalid GG, Khan SN, et al. Antibiotic resistance in patients with urinary tract infections in Pakistan. Public Health Action 2022;12:48–52. https://doi.org/10.5588/pha.21.0071.
[51] Polse RF, Yousif SY, Assafi̇ MS. Prevalence and molecular characterization of extended spectrum beta-Lactamases-producing uropathogenic Escherichia coli isolated in Zakho, Iraq. J Microbil Infect Dis 2016;6:163–7. https://doi.org/10.5799/jmid.328863.
[52] Mashwal FA, Safi SHE, George SK, Adam AA, Jebakumar AZ. Incidence and molecular characterization of the extended spectrum beta lactamase-producing Escherichia coli isolated from urinary tract infections in Eastern Saudi Arabia. Saudi Med J 2017;38:811–5. https://doi.org/10.15537/smj.2017.8.18578.
[53] Alqasim A, Abu Jaffal A, Alyousef AA. Prevalence of Multidrug Resistance and Extended-Spectrum β-Lactamase Carriage of Clinical Uropathogenic Escherichia coli Isolates in Riyadh, Saudi Arabia. International Journal of Microbiology 2018;2018:e3026851. https://doi.org/10.1155/2018/3026851.
[54] Jena J, Sahoo RK, Debata NK, Subudhi E. Prevalence of TEM, SHV, and CTX-M genes of extended-spectrum β-lactamase-producing Escherichia coli strains isolated from urinary tract infections in adults. 3 Biotech 2017;7:244. https://doi.org/10.1007/s13205-017-0879-2.
[55] Ogefere HO, Aigbiremwen PA, Omoregie R. Extended-Spectrum Beta-Lactamase (ESBL)–Producing Gram-negative Isolates from Urine and Wound Specimens in a Tertiary Health Facility in Southern Nigeria. Tropical Journal of Pharmaceutical Research 2015;14:1089–94. https://doi.org/10.4314/tjpr.v14i6.22.
[56] Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Current Opinion in Microbiology 2006;9:466–75. https://doi.org/10.1016/j.mib.2006.08.011.
[57] Nwafuluaku IG, Agbakoba NR, Ushie SN, Dilibe EA, Nwafuluaku IG, Agbakoba NR, et al. Prevalence and molecular characterization of extended spectrum beta-lactamase producing uropathogenic Escherichia coli in a tertiary health care facility in Anambra State, Nigeria. World Journal of Advanced Research and Reviews 2021;11:300–11. https://doi.org/10.30574/wjarr.2021.11.3.0467.
[58] Bali E, Açık L, Sultan N. Phenotypic and molecular characterization of SHV, TEM, CTX-M and extended-spectrum β-lactamase produced by Escherichia coli, Acinobacter baumannii and Klebsiella isolates in a Turkish hospital. African Journal of Microbiology Research 2010;4:650–4.
[59] Amoutzias GD, Nikolaidis M, Hesketh A. The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022;10:1040. https://doi.org/10.3390/microorganisms10051040.