ANTIFUNGAL AGENTS: A COMPREHENSIVE REVIEW OF MECHANISMS AND APPLICATIONS

Main Article Content

Manju Singh
Neha
Gurpreet
Arvind Rathour
Uma Dey
Dr. Praveen Kumar Gaur
Vijay Kumar

Keywords

Antifungal agents, Mechanisms of action, Immunomodulation, Azoles, Antifungal Therapy

Abstract

Introduction: Antifungal resistance poses a significant challenge in the management of fungal infections. Understanding the mechanisms of action of antifungal agents is crucial for developing effective treatment strategies.


Objective: This comprehensive review delves into the intricate world of antifungal agents, offering insights into their diverse mechanisms, current applications, and potential future directions.


Mechanisms of Action: Polyene Antifungals: Disruption of fungal cell membrane integrity through binding to ergosterol. Azoles: Inhibition of ergosterol biosynthesis via binding to lanosterol 14α-demethylase. Echinocandins: Inhibition of β-(1,3)-D-glucan synthesis, leading to cell wall destabilization. Allylamines: Inhibition of squalene epoxidase, a key enzyme in ergosterol biosynthesis. Pyrimidine Analogues: Interference with nucleic acid synthesis by inhibiting dihydrofolate reductase. Efflux pumps: Extrusion of antifungal agents from fungal cells, reducing intracellular drug concentrations. Target alteration: Mutations in drug targets, such as lanosterol 14α-demethylase or β-(1,3)-D-glucan synthase, impairing drug binding. Ergosterol pathway alterations: Upregulation of alternative pathways bypassing drug targets. Biofilm formation: Enhanced resistance through biofilm-mediated protection. Systemic Treatment of invasive fungal infections, including candidiasis and aspergillosis. Topical Management of superficial fungal infections like dermatophytosis and candidiasis. Prevention of fungal infections in high-risk patients, such as those undergoing chemotherapy or organ transplantation. Control of fungal infections in animals, improving livestock health and production.


Challenges and Future Perspectives: Emergence of multidrug-resistant fungal strains. Development of novel antifungal agents with improved efficacy and safety profiles. Strategies to overcome resistance mechanisms, including combination therapy and drug repurposing. Importance of surveillance programs to monitor antifungal resistance trends globally.


Conclusion: Antifungal agents play a critical role in the management of fungal infections. Continued research efforts are necessary to address challenges associated with antifungal resistance and to develop innovative therapeutic approaches.

Abstract 678 | pdf Downloads 219

References

1. Ademe, M. (2020). Immunomodulation for the Treatment of Fungal Infections: Opportunities and Challenges. Frontiers in Cellular and Infection Microbiology.
2. Al-Obaidi, H., Petraityte, I., Hibbard, T., Majumder, M., Kalgudi, R., & Zariwala, M. G. (2022). Antifungal nanosuspensions with surfactants and silver for the treatment of onychomycosis. European Journal of Pharmaceutics and Biopharmaceutics, 179, 194–205.
3. Ali Malayeri, F., Rezaei, A., & Raiesi, O. (2018). Antifungal agents: Polyene, azole, antimetabolite, other and future agents. Journal of Basic Research in Medical Sciences, 5(2), 48–55.
4. Anzar, N., Hasan, R., Tyagi, M., Yadav, N., & Narang, J. (2020). Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors International, 1, 100003.
5. Arana, D. M., Prieto, D., Román, E., Nombela, C., Alonso‐Monge, R., & Pla, J. (2009). The role of the cell wall in fungal pathogenesis. Microbial Biotechnology, 2(3), 308–320.
6. Asad, S. A. (2022). Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecological Complexity, 49, 100978.
7. Ashley, E. S. D., Lewis, R., Lewis, J. S., Martin, C., & Andes, D. (2006). Pharmacology of Systemic Antifungal Agents. Clinical Infectious Diseases, 43(Supplement_1), S28–S39.
8. Ball, B., Bermas, A., Carruthers-Lay, D., & Geddes-McAlister, J. (2019). Mass spectrometry-based proteomics of fungal pathogenesis, host-fungal interactions, and antifungal development. Journal of Fungi, 5(2), p.52.
9. Belanger, E. S., Yang, E., & Forrest, G. N. (2015). Combination Antifungal Therapy: When, Where, and Why. Current Clinical Microbiology Reports, 2(2), 67–75.
10. Ben‐Ami, R., Lewis, R. E., & Kontoyiannis, D. P. (2008). Immunocompromised Hosts: Immunopharmacology of Modern Antifungals. Clinical Infectious Diseases, 47(2), 226–235.
11. Brauer, V. S., Rezende, C. P., Pessoni, A. M., De Paula, R. G., Rangappa, K. S., Nayaka, S. C., et al. (2019). Antifungal agents in agriculture: Friends and foes of public health. Biomolecules, 9(10), p.521.
12. Bugeda, A., Garrigues, S., Gandía, M., Manzanares, P., Marcos, J. F., & Coca, M. (2020). The Antifungal Protein AfpB Induces Regulated Cell Death in Its Parental Fungus Penicillium digitatum. mSphere, 5(4).
13. Cafarchia, C., Figueredo, L. A., & Otranto, D. (2013). Fungal diseases of horses. Veterinary Microbiology, 167(1–2), 215–234.
14. Campitelli, M., Zeineddine, N., Samaha, G., & Maslak, S. (2017). Combination Antifungal Therapy: A Review of Current Data. Journal of Clinical Medicine Research, 9(6), 451–456.
15. Campoy, S., & Adrio, J. L. (2017). Antifungals. Biochemical Pharmacology, 133, 86–96.
16. Chakrabarti, A., & Singh, S. (2019). Challenges in invasive fungal disease. In Advancing Frontiers in Mycology and Mycotechnology: Basic and Applied Aspects of Fungi, pp.457-478.
17. Chand, P., Kumari, S., Mondal, N., Singh, S. P., & Prasad, T. (2021). Synergism of Zinc Oxide Quantum Dots with Antifungal Drugs : Potential Approach for Combination Therapy against Drug Resistant Candida albicans, 3(May), 1–13.
18. Chanyachailert, P., Leeyaphan, C., & Bunyaratavej, S. (2023). Cutaneous Fungal Infections Caused by Dermatophytes and Non-Dermatophytes: An Updated Comprehensive Review of Epidemiology, Clinical Presentations, and Diagnostic Testing. Journal of Fungi, 9(6), p.669.
19. Chen, X., Ren, B., Chen, M., Liu, M.-X., Ren, W., Wang, Q.-X., et al. (2014). ASDCD: Antifungal Synergistic Drug Combination Database. PLoS ONE, 9(1), e86499.
20. Cortés, J. C. G., Curto, M.-Á., Carvalho, V. S. D., Pérez, P., & Ribas, J. C. (2019). The fungal cell wall as a target for the development of new antifungal therapies. Biotechnology Advances, 37(6), 107352.
21. Cotter, G., & Kavanagh, K. (2000). Adherence mechanisms of Candida albicans. British journal of biomedical science, 57(3), 241–9.
22. Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of Antifungal Drug Resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752.
23. Cruz, R., & Wuest, W. M. (2023). Beyond ergosterol: Strategies for combatting antifungal resistance in Aspergillus fumigatus and Candida auris. Tetrahedron, 133, 133268.
24. Deseta, M. L., Sponton, O. E., Finos, M. B., Cuffia, F., Torres-Nicolini, A., Álvarez, V. A., et al. (2023). Development of Antifungal Films from Nanocomplexes Based on Egg White Protein Nanogels and Phenolic Compounds. Food Biophysics, 18(2), pp.273-288.
25. DIN, A., MITREA, I., & MITREA, R. (2023). Natural compounds: an effective and eco-friendly strategies for controlling and combating plant pathogens. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 12991.
26. Du Bois, A. C., Xue, A., Pham, C., Revie, N. M., Meyer, K. J., Yashiroda, Y., et al. (2022). High-Throughput Chemical Screen Identifies a 2,5-Disubstituted Pyridine as an Inhibitor of Candida albicans Erg11. mSphere, 7(3), pp.e00075-22.
27. Edwards, J. E. (2012). Fungal cell wall vaccines: an update. Journal of Medical Microbiology, 61(7), 895–903.
28. Fioriti, S., Brescini, L., Pallotta, F., Canovari, B., Morroni, G., & Barchiesi, F. (2022). Antifungal Combinations against Candida Species: From Bench to Bedside. Journal of Fungi, 8(10), 1077.
29. Füredi, P., Pápay, Z. E., Kovács, K., Kiss, B. D., Ludányi, K., Antal, I., & Klebovich, I. (2017). Development and characterization of the voriconazole loaded lipid-based nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 132, 184–189.
30. Gao, L., Jiang, S., Sun, Y., Deng, M., Wu, Q., Li, M., & Zeng, T. (2016). Evaluation of the effects of photodynamic therapy alone and combined with standard antifungal therapy on planktonic cells and biofilms of Fusarium spp. and Exophiala spp. Frontiers in Microbiology, 7, p.617.
31. Ghannoum, M. A., & Rice, L. B. (1999). Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clinical Microbiology Reviews, 12(4), 501–517.
32. Gholami, L., Shahabi, S., Jazaeri, M., Hadilou, M., & Fekrazad, R. (2023). Clinical applications of antimicrobial photodynamic therapy in dentistry. Frontiers in Microbiology, 13, p.1020995.
33. Gong, X., Su, X., & Liu, H. (2021). Diallyl Trisulfide, the Antifungal Component of Garlic Essential Oil and the Bioactivity of Its Nanoemulsions Formed by Spontaneous Emulsification. Molecules, 26(23), 7186.
34. Graf, K. T., Liu, H., Filler, S. G., & Bruno, V. M. (2023). Depletion of Extracellular Chemokines by Aspergillus Melanin. mBio, 14(3).
35. Ho, H. N., Le, T. G., Dao, T. T. T., Le, T. H., Dinh, T. T. H., Nguyen, D. H., et al. (2020). Development of Itraconazole-Loaded Polymeric Nanoparticle Dermal Gel for Enhanced Antifungal Efficacy. Journal of Nanomaterials, 2020, 1–11.
36. Hussein, A., Abdel-Mottaleb, M. M. A., El-assal, M., & Sammour, O. (2020). Novel biocompatible essential oil-based lipid nanocapsules with antifungal properties. Journal of Drug Delivery Science and Technology, 56, p.101605.
37. Janbon, G., Quintin, J., Lanternier, F., & D’Enfert, C. (2019). Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes & Immunity, 20(5), 403–414.
38. Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R., & Rex, J. H. (2004). Combination Antifungal Therapy. Antimicrobial Agents and Chemotherapy, 48(3), pp.693-715.
39. Jung, S. H., Lim, D. H., Jung, S. H., Lee, J. E., Jeong, K.-S., Seong, H., & Shin, B. C. (2009). Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. European Journal of Pharmaceutical Sciences, 37(3–4), 313–320.
40. Kaplancıklı, Z. A., Levent, S., Osmaniye, D., Sağlık, B. N., Çevik, U. A., Çavuşoğlu, B. K., et al. (2017). Synthesis and Anticandidal Activity Evaluation of New Benzimidazole-Thiazole Derivatives. Molecules, 22(12), 2051.
41. Katopodi, A., & Detsi, A. (2021). Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, p.127529.
42. Kumar, V., Ain, S., Kumar, B., Ain, Q., & Gaurav. (2020). Optimization and evaluation of topical gel containing solid lipid nanoparticles loaded with luliconazole and its anti-fungal activity. In International Journal of Pharmaceutical Research (Vol. 12, pp. 2901–2912).
43. Liang, P., Song, J., & Liu, Q. (2023). Interactions between antifungals and everolimus against Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 13, p.1131641.
44. Lírio, J., Giraldo, P. C., Amaral, R. L., Sarmento, A. C. A., Costa, A. P. F., & Goncalves, A. K. (2019). Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: A systematic review protocol. BMJ Open, 9(5).
45. Liu, B., Stevens-Green, R., Johal, D., Buchanan, R., & Geddes-McAlister, J. (2022). Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. Journal of Plant Physiology, 269, 153593.
46. Liu, S., Yue, L., Gu, W., Li, X., Zhang, L., & Sun, S. (2016). Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans. PLoS ONE, 11(3), p.e0150859.
47. Liu, W., Yuan, L., & Wang, S. (2020). Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. Journal of Medicinal Chemistry, 63(21), pp.12429-12459.
48. Lofgren, L. A., & Stajich, J. E. (2021). Fungal biodiversity and conservation mycology in light of new technology, big data, and changing attitudes. Current Biology, 31(19), pp.R1312-R1325.
49. Man, H., Hnin, S., Maw, P. D., & Loftsson, T. (2022). A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery, 1–21.
50. Mani Chandrika, K. V. S., & Sharma, S. (2020). Promising antifungal agents: A minireview. Bioorganic & Medicinal Chemistry, 28(7), 115398.
51. Mantilla-Florez, Y. F., Tuta-Quintero, E., Brito-Rodriguez, A. J., & Clavijo-Moreno, L. C. (2021). Candidiasis y Candida Albicans. Boletín de Malariología y Salud Ambiental, 61(3), 391–400.
52. Marr, K. A., Schlamm, H. T., Herbrecht, R., Rottinghaus, S. T., Bow, E. J., Cornely, O. A., et al. (2015). Combination antifungal therapy for invasive aspergillosis a randomized trial. Annals of Internal Medicine, 162(2), pp.81-89.
53. Maximiano, M. R., Rios, T. B., Campos, M. L., Prado, G. S., Dias, S. C., & Franco, O. L. (2022). Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Frontiers in Molecular Biosciences, 9, p.890654.
54. Medeiros, C. I. S., de Sousa, M. N. A., Filho, G. G. A., Freitas, F. O. R., Uchoa, D. P. L., Nobre, M. S. C., et al. (2022). Antifungal activity of linalool against fluconazoleresistant clinical strains of vulvovaginal Candida albicans and its predictive mechanism of action. Brazilian Journal of Medical and Biological Research, 55.
55. Mussin, J., & Giusiano, G. (2022). Biogenic silver nanoparticles as antifungal agents. Frontiers in Chemistry, 10, p.1023542.
56. Nikoomanesh, F., Falahatinejad, M., Černáková, L., dos Santos, A. L. S., Mohammadi, S. R., Rafiee, M., et al. (2023). Combination of Farnesol with Common Antifungal Drugs: Inhibitory Effect against Candida Species Isolated from Women with RVVC. Medicina (Lithuania), 59(4), p.743.
57. Odds, F. C., Brown, A. J. P., & Gow, N. A. R. (2003). Antifungal agents: mechanisms of action. Trends in Microbiology, 11(6), 272–279.
58. Pagano, L., Cornely, O. A., Busca, A., Caira, M., Cesaro, S., Gasbarrino, C., et al. (2013). Combined antifungal approach for the treatment of invasive mucormycosis in patients with hematologic diseases: A report from the SEIFEM and FUNGISCOPE registries. Haematologica, 98(10), p.e127.
59. Parolin, C., Abruzzo, A., Giordani, B., Oliver, J. C., Marangoni, A., Luppi, B., & Vitali, B. (2021). Anti-candida activity of hyaluronic acid combined with lactobacillus crispatus lyophilised supernatant: A new antifungal strategy. Antibiotics, 10(6), p.628.
60. Plaszkó, T., Szűcs, Z., Vasas, G., & Gonda, S. (2021). Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. Journal of Fungi, 7(7), 539.
61. Poznanski, P., Hameed, A., & Orczyk, W. (2023). Chitosan and Chitosan Nanoparticles: Parameters Enhancing Antifungal Activity. Molecules, 28(7), 2996.
62. Raad, I. I., Zakhem, A. El, Helou, G. El, Jiang, Y., Kontoyiannis, D. P., & Hachem, R. (2015). Clinical experience of the use of voriconazole, caspofungin or the combination in primary and salvage therapy of invasive aspergillosis in haematological malignancies. International Journal of Antimicrobial Agents, 45(3), pp.283-288.
63. Rarokar, N. R., Menghani, S. S., Kerzare, D. R., Khedekar, P. B., Bharne, A. P., Alamri, A. S., et al. (2022). Preparation of Terbinafin-Encapsulated Solid Lipid Nanoparticles Containing Antifungal Carbopol® Hydrogel with Improved Efficacy: In Vitro, Ex Vivo and In Vivo Study. Pharmaceutics, 14(7), p.1393.
64. Rodrigues, C. F., Alves, D. F., & Henriques, M. (2018). Combination of posaconazole and amphotericin b in the treatment of candida glabrata biofilms. Microorganisms.
65. Rottstock, T., Joshi, J., Kummer, V., & Fischer, M. (2014). Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology, 95(7), 1907–1917.
66. Ryder, N. S. (1999). Antifungal agents. IDrugs : the investigational drugs journal, 2(12), 1253–5.
67. Schikora-Tamarit, M. À., & Gabaldón, T. (2022). Using genomics to understand the mechanisms of virulence and drug resistance in fungal pathogens. Biochemical Society Transactions, 50(3), 1259–1268.
68. Sharma, I. (2021). Phytopathogenic fungi and their biocontrol applications. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology, Elsevier, pp. 155–188.
69. Sharma, M., Manoharlal, R., Negi, A. S., & Prasad, R. (2010). Synergistic anticandidal activity of pure polyphenol curcumin i in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Research, 10(5), pp.570-578.
70. Shekhar-Guturja, T., Tebung, W. A., Mount, H., Liu, N., Köhler, J. R., Whiteway, M., & Cowen, L. E. (2016). Beauvericin potentiates azole activity via inhibition of multidrug efflux, blocks Candida albicans morphogenesis, and is effluxed via Yor1 and circuitry controlled by Zcf29. Antimicrobial Agents and Chemotherapy, 60(12), pp.7468-7480.
71. Sienkiewicz, N., & Członka, S. (2022). Natural Additives Improving Polyurethane Antimicrobial Activity. Polymers, 14(13), 2533.
72. Smirnova, O. G., & Kochetov, A. V. (2016). Plant cell wall and mechanisms of resistance to pathogens. Russian Journal of Genetics: Applied Research, 6(5), 622–631.
73. Strati, F., Di Paola, M., Stefanini, I., Albanese, D., Rizzetto, L., Lionetti, P., et al. (2016). Age and gender affect the composition of fungal population of the human gastrointestinal tract. Frontiers in Microbiology, 7, p.1227.
74. Su, S., Yan, H., Min, L., Wang, H., Chen, X., Shi, J., & Sun, S. (2022). The antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy. Expert Review of Anti-infective Therapy, 20(2), 161–178.
75. Tsuge, T., Harimoto, Y., Akimitsu, K., Ohtani, K., Kodama, M., Akagi, Y., et al. (2013). Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiology Reviews, 37(1), pp.44-66.
76. Vanzolini, T., Bruschi, M., Rinaldi, A. C., Magnani, M., & Fraternale, A. (2022). Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. International Journal of Molecular Sciences, 23(1), 545.
77. Veríssimo, C., Toscano, C., Ferreira, T., Abreu, G., Simões, H., Diogo, J., et al. (2022). Invasive and Subcutaneous Infections Caused by Filamentous Fungi: Report from a Portuguese Multicentric Surveillance Program. Microorganisms, 10(5), 1010.
78. Verweij, P. E., Ananda-Rajah, M., Andes, D., Arendrup, M. C., Brüggemann, R. J., Chowdhary, A., et al. (2015). International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resistance Updates, 21, pp.30-40.
79. Wiedman, G. R., Zhao, Y., Mustaev, A., Ping, J., Vishnubhotla, R., Johnson, A. T. C., & Perlin, D. S. (2017). An Aptamer-Based Biosensor for the Azole Class of Antifungal Drugs. mSphere, 2(4).
80. Winnicka, K., Sosnowska, K., Wieczorek, P., Sacha, P. T., & Tryniszewska, E. (2011). Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole. Biological and Pharmaceutical Bulletin, 34(7), pp.1129-1133.
81. Zhang, C. W., Zhong, X. J., Zhao, Y. S., Rajoka, M. S. R., Hashmi, M. H., Zhai, P., & Song, X. (2023). Antifungal natural products and their derivatives: A review of their activity and mechanism of actions. Pharmacological Research - Modern Chinese Medicine, p.100262.
82. Zhang, Z. Q., Chen, T., Li, B. Q., Qin, G. Z., & Tian, S. P. (2021). Molecular basis of pathogenesis of postharvest pathogenic Fungi and control strategy in fruits: progress and prospect. Molecular Horticulture, 1(1), pp.1-10.