A COMPREHENSIVE REVIEW OF ACNE PREVENTION AND CONTROL WITH INDIAN HERBS
Main Article Content
Keywords
Acne Vulgaris, Medicinal Plants, Herbal Plants, Infectious Diseases, Skin Diseases
Abstract
Acne is one of the most pervasive skin conditions influencing youngsters. It is a sickness of the pilosebaceous unit. Blockage of sebaceous organs and colonization with Proionobacterium acnes prompts acne. Evaluating the seriousness of acne assists with deciding the proper treatment. Treatment of acne should to be begun as soon as conceivable to limit the gamble of scarring and antagonistic mental impacts. It ought to be custom-made to the singular patient, the sort of acne, its seriousness, the patient's capacity to utilize the treatment, and the mental state. Skin specialists are the backbone for treatment of gentle acne. Moderate acne is treated with oral anti-bacterial. Protection from anti-toxins might be diminished by resulting utilization of non‐antibiotic skin prescriptions. Extreme acne is treated with isotretinoin, and this can prompt super durable reduction. With better training and care given by clinical calling, acne treatment could be altogether moved along.
References
2. H. C. Williams, R. P. Dellavalle, and S. Garner, “Acne vulgaris,” The Lancet, 2012: 379(9813):361–372.
3. T. Coenye, E. Peeters, and H. J. Nelis, “Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors,” Research in Microbiology, 2007:158(4):386–392.
4. G. Webster, “Acne vulgaris,” The British Medical Journal, 2002:325(7362):475–479.
5. R. Nguyen and J. Su, “Treatment of acne vulgaris,” Paediatrics and Child Health, 2011:21(3):119–125.
6. C. C. Zouboulis, H. Seltmann, N. Hiroi et al., “Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes,” Proceedings of the National Academy of Sciences of the United States of America, 2002:99(10):7148–7153.
7. A. M. Layton, “Acne vulgaris and similar eruptions,” Medicine, 2005:33(1):44–48.
8. I. Truter, “Acne vulgaris,” SA Pharmaceutical Journal, 2009:76(3):12–19.
9. I. Brajac, L. Bilić-Zulle, M. Tkalčić, K. Lončarek, and F. Gruber, “Acne vulgaris: myths and misconceptions among patients and family physicians,” Patient Education and Counseling, 2004:54(1):21–25.
10. F. H. Sakamoto, L. Torezan, and R. R. Anderson, “Photodynamic therapy for acne vulgaris: a critical review from basics to clinical practice: Part II. Understanding parameters for acne treatment with photodynamic therapy,” Journal of the American Academy of Dermatology, 2010:63(2):195–211.
11. K. Bhate and H. C. Williams, “Epidemiology of acne vulgaris.,” The British journal of dermatology, 2013:168(3):474–485.
12. B. Adityan and D. M. Thappa, “Profile of acne vulgaris-A hospital-based study from South India,” Indian Journal of Dermatology, Venereology and Leprology, 2009:75(3):272–278.
13. T. Schäfer, A. Nienhaus, D. Vieluf, J. Berger, and J. Ring, “Epidemiology of acne in the general population: the risk of smoking,” British Journal of Dermatology, 2001:145(1):100–104.
14. A. N. Feneran, W. S. Kaufman, T. S. Dabade, and S. R. Feldman, “Retinoid plus antimicrobial combination treatments for acne,” Clinical, Cosmetic and Investigational Dermatology, 2011:145(4):79–92.
15. H. Gollnick, W. Cunliffe, D. Berson et al., “Management of acne: a report from a global alliance to improve outcomes in acne,” Journal of the American Academy of Dermatology, 2003:49(1):S1–S37.
16. E. Makrantonaki, R. Ganceviciene, and C. Zouboulis, “An update on the role of the sebaceous gland in the pathogenesis of acne,” Dermato-Endocrinology, 2011:3(1):41-49.
17. M. Toyoda and M. Morohashi, “Pathogenesis of acne,” Medical Electron Microscopy, 2001:34(1):29-40.
18. I. Kurokawa, F. W. Danby, Q. Ju et al., “New developments in our understanding of acne pathogenesis and treatment,” Experimental Dermatology, 2009:18(10):821-832.
19. E. C. Davis and V. D. Callender, “A review of acne in ethnic skin: pathogenesis, clinical manifestations, and management strategies,” Journal of Clinical and Aesthetic Dermatology, 2010:3(4):24-38.
20. V. K. Ghosh, D. H. Nagore, K. P. Kadbhane, and M. J. Patil, “Different approaches of alternative medicines in acne vulgaris treatment,” Oriental Pharmacy and Experimental Medicine, 2011:11(1):1-9.
21. C. C. Zouboulis, “Sebaceous gland receptors,” Dermato-Endocrinology, 2009:1(2):77-80.
22. R. Ganceviciene, V. Graziene, S. Fimmel, and C. C. Zouboulis, “Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris,” British Journal of Dermatology, 2009:160(2):345-352.
23. B. C. Melnik and G. Schmitz, “Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris,” Experimental Dermatology, 2009:18(10):833–841.
24. M. Cappel, D. Mauger, and D. Thiboutot, “Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women,” Archives of Dermatology, 2005:141(3):333–338.
25. B. C. Melnik, “Role of FGFR2-signaling in the pathogenesis of acne,” Dermato-Endocrinology, 2009:1(3):141–156.
26. B. C. Melnik, G. Schmitz, and C. C. Zouboulis, “Anti-acne agents attenuate FGFR2 signal transduction in acne,” Journal of Investigative Dermatology, 2009:129(8): 1868–1877.
27. Tewari S, David J, Gautam A. Physicochemical analysis of probiotic functional Kulfi by using Indian blackberry (Syzygium cumini L.). Journal of Pharmacognosy and Phytochemistry, 2021:10(5):236-246.
28. Tewari S, David J, Gautam A. Sensory analysis of probiotic functional kulfi by using Indian blackberry (Syzygium cumini L.). The Pharma Innovation Journal, 2021:10(9):1421-1426.
29. Baliga MS, Bhat HP, Baliga BRV, Wilson R, Palatty PL. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): a review. Food Research International, 2011:44(7):1776-1789.
30. Chaudhuri AN, Pal S, Gomes A, Bhattacharya S. Anti‐inflammatory and related actions of Syzygium cuminii seed extract. Phytotherapy research, 1990:4(1):5-10.
31. Jagetia GC. Radioprotective potential of plants and herbs against the effects of ionizing radiation. Journal of clinical biochemistry and nutrition, 2007:40(2):74-81.
32. Giri J, Sathidevi T, Dushyanth N. Effect of jamun seed extract on alloxan induced diabetes in rats. Journal of the Diabetic Association of India, 1985:25(4):115-119.
33. Ramteke V, Kurrey V, Kar S. Jamun: A traditional fruit and medicine. Popular Kheti, 2015:3(3):188-190.
34. Sagrawat H. Pharmacological potential of Eugenia jambolana: A review. Pharmacogn Mag, 2006:2(6):96- 105.
35. R. Chanda, “Phytochemical and pharmacological activity of Aegle marmelos as a potential medicinal plant: an overview,” The Internet Journal of Pharmacology, 2008:6(1):3.
36. S. E. Kintzios, “Terrestrial plant-derived anticancer agents and plant species used in anticancer research,” Critical Reviews in Plant Sciences, 2006:25(1):79-113.
37. V. K. Singhal, A. Salwan, P. Kumar, and J. Kaur, “Phenology, pollination and breeding system of Aegle marmelos (Linn.) correa (Rutaceae) from India,” New Forest, 2011:42(1):85-100.
38. G. C. Jagetia and M. S. Baliga, “The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study,” Journal of Medicinal Food, 2004:7(3):343-348.
39. M. S. Baliga, H. P. Bhat, N. Joseph, and F. Fazal, “Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): a concise review,” Food Research International, 2011:44(7):1768-1775.
40. S. K. Roy and R. N. Sing, “Bael fruit (Aegle marmelos): a potential fruit for processing,” Economic Botany, 1979:33(2):203-212.
41. P. Rani and N. Khullar, “Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi,” Phytotherapy Research, 2004:18(2):670-673.
42. B. K. Rana, U. P. Singh, and V. Taneja, “Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos,” Journal of Ethnopharmacology, (1997)57:29-34.
43. G. Balasubramanian, M. Sarathi, R. S. Kumar, and A. S. S. Hameed, “Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp,” Aquaculture, (2007)263:15-19.
44. T. Citarasu, V. Sivaram, G. Immanuel, N. Rout, and V. Murugan, “Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeusmonodon with reference to haematological, biochemical and immunological changes,” Fish and Shellfish Immunology, (2006)21:372-384.
45. S. B. Raja, M. R. Murali, and S. N. Devaraj, “Differential expression of ompC and ompF in multidrug-resistant Shigella dysenteriae and Shigella flexneri by aqueous extract of Aegle marmelos, altering its susceptibility toward β-lactam antibiotics,” Diagnostic Microbiology and Infectious Disease, (2008)61:321-328.
46. F. G. Shoba and M. Thomas, “Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhea,” Journal of Ethnopharmacology, (2001)76:73-76.
47. Grindlay D, Reynolds T. The aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol. (1986) 16:117–51.
48. Triantafyllidi A, Xanthos T, Papalois A, Triantafillidis JK. Herbal and plant therapy in patients with inflammatory bowel disease. Ann Gastroenterol. (2015) 28:210–20.
49. Jain S, Rathod N, Nagi R, Sur J, Laheji A, Gupta N. Antibacterial effect of aloe vera gel against oral pathogens: an in-vitro study. J Clin Diagn Res. (2016) 10:41–4.
50. Reuter J, Jocher A, Stump J, Grossjohann B, Franke G, Schempp CM. Investigation of the anti-inflammatory potential of aloe vera gel (97.5%) in the ultraviolet erythema test. Skin Pharmacol Physiol. (2008) 21:106–10.
51. Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, et al.. Antiseptics for burns. Cochrane Database Syst Rev. (2017) 7:CD011821.
52. Hajheydari Z, Saeedi M, Morteza-Semnani K, Soltani A. Effect of aloe vera topical gel combined with tretinoin in treatment of mild and moderate acne vulgaris: a randomized, double-blind, prospective trial. J Dermatolog Treat. (2014) 25:123–9.
53. Juhász M, Korta D, Mesinkovska NA. A review of the use of ultrasound for skin tightening, body contouring, and cellulite reduction in dermatology. Dermatolog Surg. (2018) 44:949–63.
54. Saddiq A.A., Al-Ghamdi H. Aloe vera extract: A novel antimicrobial and antibiofilm against methicillin resistant Staphylococcus aureus strains. Pak. J. Pharm. Sci. (2018)31:2123–2130.
55. Jain S., Rathod N., Nagi R., Sur J., Laheji A., Gupta N., Prasad S. Antibacterial Effect of Aloe vera Gel against Oral Pathogens: An In-vitro Study. J. Clin. Diagn. Res. (2016)10:41–44.
56. Xiang H., Cao F., Ming D., Zheng Y., Dong X., Zhong X., Wang L. Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development. Appl. Microbiol. Biotechnol. (2017)101:6671–6681.
57. Cataldi V., Di Bartolomeo S., Di Campli E., Nostro A., Cellini L., Di Giulio M. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases. Int. J. Immunopathol. Pharmacol. (2015)28:595–602.
58. Karkare S.R., Ahire N.P., Khedkar S.U. Comparative evaluation of antimicrobial activity of hydroalcoholic extract of Aloe vera, garlic, and 5% sodium hypochlorite as root canal irrigants against Enterococcus faecalis: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. (2015)33:274–278.
59. Basnet P., Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. (2011)16:4567–4598.
60. Siviero A., Gallo E., Maggini V., Gori L., Mugelli A., Firenzuoli F., Vannacci A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med. 2015;5:57–70.
61. Kotha R.R., Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. (2019)24:2930.
62. Prasad S., Aggarwal B.B. Turmeric, the golden spice. In: Benzie I.F.F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. CRC Press/Taylor & Francis; Boca Raton, FL, USA: (2011)24:263–288.
63. Nair K.P. Turmeric (Curcuma longa L.) and Ginger (Zingiber officinale Rosc.)—World’s Invaluable Medicinal Spices. The Agronomy and Economy of Turmeric and Ginger. 1st ed. Springer Nature; Cham, Switzerland: (2019)24:1–243.
64. Kwiecien S., Magierowski M., Majka J., Ptak-Belowska A., Wojcik D., Sliwowski Z., Magierowska K., Brzozowski T. Curcumin: A potent protectant against esophageal and gastric disorders. Int. J. Mol. Sci. (2019)20:1477.
65. Cheng Y.T., Lu C.C., Yen G.C. Phytochemicals enhance antioxidant enzyme expression to protect against NSAID-induced oxidative damage of the gastrointestinal mucosa. Mol. Nutr. Food Res. (2017)61:1460.
66. Singh D.P., Borse S.P., Rana R., Nivsarkar M. Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: A step towards translational medicine. Food Chem. Toxicol. (2017)108:43–52.
67. Schraufstätter E., Bernt H. Antibacterial action of curcumin and related compounds. Nature. (1949)164:456–457.
68. Lutomski J., Kędzia B., Dębska W. Wirkung des Äthanolextraktes und aktiver Substanzen aus Curcuma longa auf Bakterien und Pilze (Effect of the ethanol extract and active substances from Curcuma longa on bacteria and fungi) Planta Med. (1974)26:9–19.
69. Loo C.Y., Rohanizadeh R., Young P.M., Traini D., Cavaliere R., Whitchurch C.B., Lee W.H. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J. Agric. Food Chem. (2016)64:2513–2522.
70. Shukla A., Parmar P., Rao P., Goswami D., Saraf M. Twin peaks: Presenting the antagonistic molecular interplay of curcumin with LasR and LuxR quorum sensing pathways. Curr. Microbiol. (2020)30:101676.
71. Abdulrahman H., Misba L., Ahmad S., Khan A.U. Curcumin induced photodynamic therapy mediated suppression of quorum sensing pathway of Pseudomonas aeruginosa: An approach to inhibit biofilm in vitro. Photodiagn. Photodyn. Ther. (2020)30:101645.
72. Packiavathy I.A., Priya S., Pandian S.K., Ravi A.V. Inhibition of biofilm development of uropathogens by curcumin—An anti-quorum sensing agent from Curcuma longa. Food Chem. (2014)148:453–460.
73. Das P., Gupta G., Velu V., Awasthi R., Dua K., Malipeddi H. Formation of struvite urinary stones and approaches towards the inhibition—A review. Biomed. Pharmacother. (2017)96:361–370.
74. Teow S.Y., Liew K., Ali S.A., Khoo A.S.B., Peh S.C. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J. Trop. Med. (2016)96;2853045.
75. Bahari S., Zeighami H., Mirshahabi H., Roudashti S., Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob. Antimicrob. Resist. (2017)10:21–28.
76. Rangel-Castañeda I.A., Cruz-Lozano J.R., Zermeño-Ruiz M., Cortes-Zarate R., Hernández-Hernández L., Tapia-Pastrana G., Castillo-Romero A. Drug susceptibility testing and synergistic antibacterial activity of curcumin with antibiotics against enterotoxigenic Escherichia coli. Antibiotics. (2019)8:43.
77. Sharma M., Manoharlal R., Negi A.S., Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. (2010)10:570–578.
78. Lawhavinit O., Kongkathip N., Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart J. Nat. Sci. (2010)44:364–371.
79. Betts J.W., Sharili A.S., La Ragione R.M., Wareham D.W. In vitro antibacterial activity of curcumin-polymyxin B combinations against multidrug-resistant bacteria associated with traumatic wound infections. J. Nat. Prod. (2016)79:1702–1706.
80. Sasidharan N.K., Sreekala S.R., Jacob J., Nambisan B. In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. Biomed. Res. Int. (2014)561456.
81. Wang Y., Yan M., Ma R., Ma S. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors. Arch. Pharm. Chem. Life Sci. (2015)348:266–274.
82. Gunes H., Gulen D., Mutlu R., Gumus A., Tas T., Topkaya A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health. (2016)32:246–250.
83. Silva A.C.D., Santos P.D.F., Palazzi N.C., Leimann F.V., Fuchs R.H.B., Bracht L., Gonçalves O.H. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots. Food Funct. (2017)8:1851–1858.
84. Khan M., Ali M., Shah W., Shah A., Yasinzai M.M. Curcumin-loaded self-emulsifying drug delivery system (cu-SEDDS): A promising approach for the control of primary pathogen and secondary bacterial infections in cutaneous leishmaniasis. Appl. Microbiol. Biotechnol. (2019)103:7481–7490.
85. Polaquini C.R., Morão L.G., Nazaré A.C., Torrezan G.S., Dilarri G., Cavalca L.B., Campos D.L., Silva I.C., Pereira J.A., Scheffers D.J., et al. Antibacterial activity of 3,3′-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg. Chem. (2019)90:103031.
86. Srivastava P., Shukla M., Kaul G., Chopra S., Patra A.K. Rationally designed curcumin based ruthenium(II) antimicrobials effective against drug-resistant Staphylococcus aureus. Dalton Trans. (2019)48:11822–11828.
87. Neelakantan P., Subbarao C., Sharma S., Subbarao C.V., Garcia-Godoy F., Gutmann J.L. Effectiveness of curcumin against Enterococcus faecalis biofilm. Acta Odontol. Scand. (2013)71:1453–1457.
88. Marickar R.F., Geetha R.V., Neelakantan P. Efficacy of contemporary and novel intracanal medicaments against Enterococcus faecalis. J. Clin. Pediatr. Dent. (2014)39:47–50.
89. Yun D.G., Lee D.G. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. (2016)100:5505–5514.
90. Raorane C.J., Lee J.H., Kim Y.G., Rajasekharan S.K., García-Contreras R., Lee J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. (2019)10:990.
91. Betts J.W., Wareham D.W. In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii. BMC Microbiol. (2014)14:172.
92. Tajbakhsh S., Mohammadi K., Deilami I., Zandi K., Fouladvand M., Ramedani E., Asayesh G. Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr. J. Biotechnol. (2008)7:3832–3835.