ANTIMICROBIAL ACTIVITY, PHYSIOCHEMICAL AND SPECTRAL CHARACTERIZATION OF RARE EARTH METAL CHELATES BASED ON THIOCARBOHYDRAZIDE DERIVATIVES

Main Article Content

Dr. Sharad Sankhe1
Mr. Shashank Parab

Keywords

Antimicrobial activity, biologically active molecule, Molar conductivity, Lanthanide complexes, Mononuclear

Abstract

The physiologically active N”-[(Z)-(4-Fluorophenyl)methylidene]-N”-[(1E,2E)-[hydroxylamine-1,2-diphenylidene]thiocarbohydrazide (HBMToFB) ligand was prepared by condensation reaction between α-benzilmonoximethiocarbohydrazide and o-fluorobenzaldehyde in the presence of the catalytic amount of HCl. This ligand is used to synthesize lanthanide metal complexes. The kind of trinuclear lanthanide complexes [Ln(BMToFB)3]comprises ten different compounds. In this case, the functional groups of the synthesized Ln = La(III), Lu(III), Ce(III), Sm(III), Nd(III), Ho(III), Yb(III), Dy(III) Pr(III), and Gd(III) were shown in detail through UV-visible and infrared spectroscopy, PMR spectroscopy, elemental analysis (C, H, N, S analysis), magnetic susceptibility, and molar conductivity. Using powder XRD characteristics of the complexes were examined. N”-[(Z)-(4-Fluorophenyl)methylidene]-N”-[(1E,2E)-[hydroxylamine-1,2-diphenylidene] thiocarbohydrazide acted as a tridentate, monobasic ligand, and its two oxygen, two sulfur, and nitrogen atoms formed a structure that could interact with metal ions, according to infrared spectroscopy. The antibacterial activity of the synthesized metal complexes was successfully tested.

Abstract 35 | pdf Downloads 45

References

1. Fouad, R. (2020). Synthesis and characterization of lanthanide complexes as potential therapeutic agents. Journal of Coordination Chemistry, 73(14), 2015-2028.
2. Ajlouni, A. M., Abu-Salem, Q., Taha, Z. A., Hijazi, A. K., & Al Momani, W. (2016). Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene) hydrazide] Schiff bases ligand. Journal of rare earths, 34(10), 986-993.
3. Georgieva, I., Mihaylov, T., & Trendafilova, N. (2014). Lanthanide and transition metal complexes of bioactive coumarins: Molecular modeling and spectroscopic studies. Journal of Inorganic Biochemistry, 135, 100-112.
4. Mishra, N., Kumar, K., Pandey, H., Anand, S. R., Yadav, R., Srivastava, S. P., & Pandey, R. (2020). Synthesis, characterization, optical and anti-bacterial properties of benzothiazole Schiff bases and their lanthanide (III) complexes. Journal of Saudi Chemical Society, 24(12), 925-933.
5. Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387.
6. Staszak, K., Wieszczycka, K., Marturano, V., & Tylkowski, B. (2019). Lanthanides complexes–Chiral sensing of biomolecules. Coordination Chemistry Reviews, 397, 76-90.
7. Mattocks, J. A., & Cotruvo, J. A. (2020). Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chemical Society Reviews, 49(22), 8315-8334.
8. Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387.
9. Shahraki, S., Shiri, F., Heidari Majd, M., & Dahmardeh, S. (2019). Anti-cancer study and whey protein complexation of new lanthanum (III) complex with the aim of achieving bioactive anticancer metal-based drugs. Journal of Biomolecular Structure and Dynamics, 37(8), 2072-2085.
10. Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387.
11. Patyal, M., Kaur, K., Bala, N., Gupta, N., & Malik, A. K. (2023). Innovative Lanthanide Complexes: Shaping the future of cancer/tumor Chemotherapy. Journal of Trace Elements in Medicine and Biology, 127277.
12. Gill, M. R., & Vallis, K. A. (2019). Transition metal compounds as cancer radiosensitizers. Chemical Society Reviews, 48(2), 540-557.
13. Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z., & Huang, C. (2019). Review on the electroluminescence study of lanthanide complexes. Advanced Optical Materials, 7(11), 1801256.
14. Matharu, K., Mittal, S. K., & Kumar, S. A. (2011). A novel method for the determination of individual lanthanides using an inexpensive conductometric technique. Analytical Methods, 3(6), 1290-1295.
15. Saunderson, A. (1968). A permanent magnet Gouy balance. Physics Education, 3(5), 272.
16. Saha, N., & Bhattacharyya, D. (1976). Chelates of Cu (II), Ni (II) & Co (II) with 3, 5-Dimethylpyrazole-I-acetic Acid.
17. A. W. Bauer, W. M. M. Kirby, J. C. Sherries, M. Truck, Am. J. Clin. Path. 44 (1966) 493-497.
18. E. Jawetz, J. L. Melnick, E. A. Adelberg., Lange, Medical Pub. 14th ed., California, 1980, p. 123-124.
19. Atta-ur-Rahman, M. I. Choudhary, W. J. Thomsen., Harwood Academic Press, Amsterdam, 1999, p. 12-22.
20. Shebl, M., Khalil, S. M., & Al-Gohani, F. S. (2010). Preparation, spectral characterization and antimicrobial activity of binary and ternary Fe (III), Co (II), Ni (II), Cu (II), Zn (II), Ce (III) and UO2 (VI) complexes of a thiocarbohydrazone ligand. Journal of Molecular Structure, 980(1-3), 78-87.
21. Ferenc, W., Cristóvão, B., & Sarzyński, J. (2013). Magnetic, thermal and spectroscopic properties of lanthanide (III) 2-(4-chlorophenoxy) acetates, Ln (C8H6ClO3) 3• nH2O. Journal of the Serbian Chemical Society, 78(9), 1335-1349.
22. Wei, D. Y., Zheng, Y. Q., & Lin, J. L. (2002). Two Hydroxo Bridged Dinuclear Lanthanide Phen Complexes:[Ln2 (phen) 4 (H2O) 4 (OH) 2](phen) 2 (NO3) 4 with Ln= Tm, Yb. Zeitschrift für Naturforschung B, 57(6), 625-630.
23. Al-Zaidi, B. H., Hasson, M. M., & Ismail, A. H. (2019). New complexes of chelating Schiff base: Synthesis, spectral investigation, antimicrobial, and thermal behavior studies. Journal of Applied Pharmaceutical Science, 9(4), 045-057.
24. Guo, H., Wang, Y., Li, G., Liu, J., Feng, P., & Liu, D. (2017). Cyan emissive super-persistent luminescence and thermoluminescence in BaZrSi 3 O 9: Eu 2+, Pr 3+ phosphors. Journal of Materials Chemistry C, 5(11), 2844-2851.
25. P. Singla, V. Luxami and K. Paul, Eur. J. Med. Chem., 2016, 117, 59
26. Jorgensen, C.K., Prog. Inorg. Chem., 1962, vol. 4, p. 73.
27. Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, New York: Wiley, 1981.