Assessment of phytochemical and pharmacognostic properties of flowers of Achyranthens Aspera
Main Article Content
Keywords
Achyranthens Aspera, FT-IR spectra, standardization, microscopy
Abstract
The current work reveals pharmacognostic and phytochemical analyses on the flowers of Achyranthens Aspera, a member of the Amaranthaceae family. The Americas, Asia, and Africa are where you can find Achyranthens Aspera most frequently. Achyranthens Aspera is a perennial herb that stands tall, quadrangular, and has several branches. The entire plant has been utilized for medicinal purposes, including the roots, seeds, leaves, roots, flowers, and fruits. Despite its significance, there hasn't yet been any pharmacognostic research on its components, like flowers. Several organoleptic traits were visible upon microscopical evaluation. A microscopic study of the flowers revealed the presence of calcium oxalate crystals, fibers, and trichomes, as well as fluorescence analysis. The current work also comprises a Fourier transform infrared spectroscopy analysis of Achyranthens Aspera. FTIR spectra showed the existence of aldehyde, alkene, alkyl, amine and aromatic groups. By offering trustworthy evidence of the plant's quality, these pharmacognostic and phytochemical investigations can be beneficial to medical experts and companies who produce herbal medicines
References
Adeosun CB, Olaseinde S, Opeifa AO and Atolani O (2013). Essential oil from the stem bark of Cordia sebestena scavenges free radicals. J. Acute. Med., 3(4): 138-141.
Agunbiade FO, Adeosun CB and Daramola GG (2013). Nutritional properties and potential values of Cordia sebestena seed and seed oil. Gida. J. Food, 38(3): 127- 133.
Ahmed S and Hasan MM (2015). Standardization of crude drugs: A precise review. World. J. Pharm. Res., 4(10): 155-174.
Ankad G, Upadhya V, Pai SR, Hegde HV, Roy S. In vitro antimicrobial activity of Achyranthes coynei Sant. Asian Pac J Trop Dis 2013;3:930-5.
Baravalia Y, Nagani K and Chanda S (2011). Evaluation of pharmacognostic and physicochemical parameters of Wood fordiafruticosa Kurz. flowers. Pharmacogn. J., 2(18): 13-18.
Bharthi V, Meghashree BM, Shantha TR, Rama RV, Shiddamallayya N and Bhat S (2017). Phytochemical analysis and powder microscopy of flowers of Vitex negundo L–Verbenaceae. World J. Pharm. Pharm. Sci., 6(4): 1852-1862.
Bigoniya P, Singh CS, Srivastava B. Pharmacognostical and physic chemical standardization of Syzgium cumini and Azadirachta indica seed. Asian Pac J Trop Biomed 2012;2:S290-5.
Bijeshmon PP and George S (2014). Antimicrobial activity and powder microscopy of the flowers of Tabernaemontana divaricata R. BR. Indo Am J. Pharm. Res., 4: 1601-5.
Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, Wang R, Yao H, Cao J, Cornara L and Burlando B (2017). Phytochemicals from fern species: Potential for medicine applications. Phytochem. Rev., 16(3): 379-440.
Casillas-Vargas G, Ocasio-Malavé C, Medina S, MoralesGuzmán C, Del Valle RG, Carballeira NM and Sanabria-Ríos DJ (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid. Res., 82: 101093.
Dai J, Sorribas A, Yoshida WY and Williams PG (2010). Sebestenoids A-D, BACE1 inhibitors from Cordia sebestena. Phytochemistry, 71(17-18): 2168-2173.
Dandekar R, Fegade B and Bhaskar VH (2015). GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. J. Pharmacogn. Phytochem., 4(1): 149-154.
Das M, Mondal S, Ghosal S, Banerji A, Dixit AK and Prasad PVV (2021). Phyto-pharmacognostical evaluation and HPTLC finger printing profile of Gulbanafsha (Viola odorata L.) flower. GSC. Biol. Pharm. Sci., 14(1): 183-192.
Duan DD, Bu CY, Cheng J, Wang YN and Shi GL (2011). Isolation and identification of acaricidal compounds in Inula japonica (Asteraceae). J. Econ. Entomol., 104(2): 375-378.
Evans WC (2009). Techniques in microscopy, In: Trease and Evans, pharmacognosy, 16th ed., London, Elsevier Health Sciences Publishers, UK, pp.563-567.
Gopu C, Chirumamilla P, Daravath SB, Vankudoth S and Taduri S (2021). GC-MS analysis of bioactive compounds in the plant parts of methanolic extracts of Momordica cymbalaria Fenzl. J. Med. Plants., 9(3): 209-218.
Gurudeva MR. Karnatakada Aushadhiya Sasyagalu (Kannada). 2nd ed. Bangalore: Divyachandra Prakashana; 2001. p. 36 9.
Hanani E, Soewandi SHW and Revita N (2019). Pharmacognostical and preliminary phytochemical evaluation of Achyranthens Aspera Pharmacogn. J., 11(5): 1100-1105.
Hegde SV, Hegde GR, Mulgund GS, Upadhya V. Pharmacognostic evaluation of leaf and fruit of Capsicum frutescens (Solanaceae). Pharmacognsy J 2014;6:14 22.
Joshi AC. Variations in the medullary bundles of Achyranthes apera L. and the original hone of the species. New Phytol 1934;33:53-7.
Kadam PV, Yadav KN, Deoda RS, Narappanawar NS, Shivatare RS and Patil MJ (2012). Pharmacognostic and phytochemical studies on roots of Agave americana (Agavaceae). Int. J. Pharmacogn. Phytochem. Res., 4(3): 92-96.
Khan M, Rizwani GH and Zahid H (2015). Standardization of dried flowers of Moringa oleifera (Lamk.) and Jasminum sambac (L.) according to WHO guidelines. Int. J. Pharm. Pharm. Sci., 7(10): 19-22.
Kumaresan M, Palanisamy PN and Kumar PE (2012). Application of eco-friendly natural dye obtained from Cordia sebestena on cotton using combination of mordants. J. Nat. Prod. Plant. Resour., 2(1): 32-38.
Nisar B, Sultan A and Rubab SL (2018). Comparison of medicinally important natural products versus synthetic drugs-a short commentary. Nat. Prod. Chem. Res., 6(2): 308.
Pai SR, Upadhya V, Hegde HV, Joshi RK, Kholkute SD. New report of triterpenoid betulinic acid along with oleanolic acid from Achyranthes aspera by reversed phase ultra flow liquid chromatographic analysis and confirmation using high performance thin layer chromatographic and fourier transform infrared spectroscopic techniques. J Planar Chromatogr 2014;27:38 41.
Pai SR, Upadhya V, Hegde HV, KholkuteSD. Achyranthes coynei Santapau (Amranthaceae) – An addition of endemic taxon to Flora of Karnataka, India. J Threat Taxa 2011;3:1875 9.
Parthipan B, Suky MGT and Mohan VR (2015). GC-MS analysis of phytocomponents in Pleiospermium alatum (Wall. ex Wight & Arn.) Swingle, (Rutaceae). J. Pharmacogn. Phytochem., 4(1): 216-222.
Pavani P and Naika R (2021). Evaluation of antibacterial activity and GCMS analysis of Zanthoxylum ovalifolium fruit extracts. J. Pharm. Res. Int., 33(30B): 7-17.
Pavia DL, Lampman GM, Kriz GS and Vyvyan JA, (2008). Introduction to Spectroscopy, 5th ed., Cengage Learning, pp.28-31.
Pohl CH, Kock JL and Thibane VS (2011). Antifungal free fatty acids: A review. Sci. Against Microb Pathogens: Commun. Curr. Res. Technol. Adv., 1: 61- 71.
Prakash S, Elavarasan N, Subashini K, Kanaga S, Dhandapani R, Sivanandam M, Kumaradhas P, Thirunavukkarasu C and Sujatha V (2020). Isolation of hesperetin-A flavonoid from Cordia sebestena flower extract through antioxidant assay guided method and its antibacterial, anticancer effect on cervical cancer via in vitro and in silico molecular docking studies. J. Mol. Struct., 1207: 127751.
Prasanth DSNBK, Rao AS and Prasad YR (2017). Pharmacognostic standardization of Aralia racemosa L. stem. Indian. J. Pharm. Sci., 79(2): 220-226.
Rajeswari G, Murugan M and Mohan VR (2012). GC-MS analysis of bioactive components of Hugoni amystax L. Res. J. Pharm. Boil. Chem. Sci., 3(4): 301-308.
Ravi L, Selvaraj V, Shankar S, Sundar RDV, Segaran G, Kumaresan S and Sadhana V (2020). Methylene blue degradation by AgCuO bimetallic nanomaterial, green synthesized using Cordia sebestena leaves. Res. J. Pharm. Technol., 13(7): 3122-3128.
Reddy MP, Shantha TR, Rao VR and Venkateshwarlu G (2015). Pharmacognostical and Physicochemical Evaluation on the Flowers of Justicia adhatoda L. Res. J. Pharmacogn. Phytochem., 7(2): 73.
Ryu J, Lyu JI, Kim DG, Kim JM, Jo YD, Kang SY, Kim JB, Ahn JW and Kim SH (2020). Comparative analysis of volatile compounds of gamma-irradiated mutants of rose (Rosa hybrida). Plants, 9(9): 1221.
Salehi B, Quispe C, Sharifi-Rad J, Cruz-Martins N, Nigam M, Mishra AP, Konovalov DA, Orobinskaya V, Abu-Reidah IM, Zam W and Sharopov F (2021). Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol., 11: 1819.
Selvaraju R, Sakuntala P and Jaleeli KA (2021). GC-MS and FTIR analysis of chemical compounds in Ocimum gratissimum plant. Biophysics., 66(3): 401-408.
Sharma BD, Kulkarni BG. Achyranthes coynei Santapau, Amaranthaceae. In: Nayar MP, Sastry AR, editors. Red Data Book of Indian Plants. Vol. 2. Calcutta: Botanical Survey of India; 1987. p. 8-9.
Souza CR, Bezerra WP and Souto JT (2020). Marine alkaloids with anti-inflammatory activity: current knowledge and future perspectives. Mar. Drugs., 18(3): 147.
Sun Y, Gao L, Hou W and Wu J (2020). β-Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPSexposed BV2 cells. BioMed. Res. Int., 7532306
Tandon N, editor. Quality Standards of Indian Medicinal Plants. 1st ed., Vol. 9. New Delhi: Indian Council of Medical Research; 2011. p. 18-31.
Tang G, Lin X, Li J, Li R, Wang D and Ji S (2018). Pharmacognostical studies of Premna microphylla. Rev. Bras. Farmacogn., 28(5): 520-526.
Ullah R, Bakht J and Shah MR (2019). GC-MS analysis of bioactive compounds present in medicinally important Periplocahydaspidis. Pak. J. Pharm. Sci., 32(4): 1615-1619.
Upadhya V, Ankad GM, Pai SR, Hegde HV, Kholkute SD. Accumulation and trends in distribution of three triterpenoids in various parts of Achyranthes coynei determined using RP UFLC analysis. Pharmacogn Mag 2014;10:398 401.
World Health Organization (2011). Quality control methods for herbal materials. World Health Organization, pp.15-16 Xiao J (2017). Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food. Sci. Nutr., 57(9): 1874-1905.
Zhang M, Wang C, Zhang R, Chen Y, Zhang C, Heidi H and Li M (2021). Comparison of the guidelines on good agricultural and collection practices in herbal medicine of the European Union, China, the WHO, and the United States of America. Pharmacol. Res., 167: 105533.
Zhao C, Yang C, Liu B, Lin L, Sarker SD, Nahar L, Yu H, Cao H and Xiao J (2018). Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends. Food. Sci. Technol., 72: 1-12.