A REVIEW PAPER: ON VIRULENT DETERMINANTS AND ANTIMICROBIAL RESISTANCE MECHANISMS OF PSEUDOMONAS AERUGINOSA

Main Article Content

Mehraj Gul, Fawad Shabir Memon, Ahad Mehmood, Waseem Ullah Khan, Sarfaraz Ali, Abdul Latif

Keywords

Opportunistic pathogen, virulent determinants, Antimicrobial resistance AMR, biocides, secretory systems, exopolysaccharides, biofilm, efflux system, therapeutic strategies.

Abstract

Pseudomonas aeruginosa is gram negative, rod shaped, ubiquitous and an opportunistic pathogen that displays various virulent determinants and possess different antimicrobial resistance mechanisms.  It can thrive in different ecological niches and responsible for various nosocomial infections e.g. wound, UTIs and respiratory infections. According to the WHO it is placed in list of most critical priorities in need of drug development due its increased intrinsic & acquired antimicrobial resistance mechanisms and its ability to bear different biocides e.g. disinfectants, antiseptics and preservatives. The major virulent determinants of P. aeruginosa are Fimbriae, Polar flagella, secretion systems (Type I–VI), some enzymes Elastase, protease, hemolysin and some quorum-sensing molecules. The lipopolysaccharide (LPS) and exopolysaccharides such as alginate, pel & psl are also major contributors in increased resistance against commonly prescribed antibiotics and biocides. The other Major resistance mechanisms in Pseudomonas aeruginosa are Impermeability of membrane, Biofilm formation, Efflux systems and Inactivation & structural modifications in antibiotics.

Abstract 134 | PDF Downloads 160

References

1. Aghazadeh, M., Hojabri, Z., Mahdian, R., Nahaei, M. R., Rahmati, M., Hojabri, T., & Pajand, O. (2014). Role of efflux pumps: MexAB-OprM and MexXY (-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients. Infection, Genetics and Evolution, 24, 187-192..
2. Ahator, S. D., & Zhang, L. (2019). Small is mighty—chemical communication systems in Pseudomonas aeruginosa. Annual review of microbiology, 73, 559-578.
3. Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783-801..
4. Alav, I., Kobylka, J., Kuth, M. S., Pos, K. M., Picard, M., Blair, J. M., & Bavro, V. N. (2021). Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chemical Reviews, 121(9), 5479-5596.
5. Allsopp, L. P., Wood, T. E., Howard, S. A., Maggiorelli, F., Nolan, L. M., Wettstadt, S., & Filloux, A. (2017). RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 114(29), 7707-7712.
6. Allured, V. S., Collier, R. J., Carroll, S. F., & McKay, D. B. (1986). Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proceedings of the National Academy of Sciences, 83(5), 1320-1324.
7. Allydice-Francis, K., & Brown, P. D. (2012). Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables. International journal of microbiology, 2012.
8. Azuama, O. C., Ortiz, S., Quirós-Guerrero, L., Bouffartigues, E., Tortuel, D., Maillot, O., ... & Tahrioui, A. (2020). Tackling Pseudomonas aeruginosa virulence by mulinane-like diterpenoids from Azorella atacamensis. Biomolecules, 10(12), 1626.
9. Baker, P., Hill, P. J., Snarr, B. D., Alnabelseya, N., Pestrak, M. J., Lee, M. J., ... & Howell, P. L. (2016). Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Science advances, 2(5), e1501632..
10. Balasubramanian, D., Schneper, L., Kumari, H., & Mathee, K. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic acids research, 41(1), 1-20.
11. Ball, G., Durand, É., Lazdunski, A., & Filloux, A. (2002). A novel type II secretion system in Pseudomonas aeruginosa. Molecular microbiology, 43(2), 475-485.
12. Banin, E., Vasil, M. L., & Greenberg, E. P. (2005). Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences, 102(31), 11076-11081.
13. Bao, Z., Stodghill, P. V., Myers, C. R., Lam, H., Wei, H. L., Chakravarthy, S., ... & Swingle, B. (2014). Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000. PloS one, 9(2), e86628.
14. Bardoel, B. W., van der Ent, S., Pel, M. J., Tommassen, J., Pieterse, C. M., van Kessel, K. P., & van Strijp, J. A. (2011). Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS pathogens, 7(8), e1002206.
15. Basler, M. (2015). Type VI secretion system: secretion by a contractile nanomachine. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1679), 20150021.
16. Basler, Á., Pilhofer, Á., Henderson, G. P., Jensen, G. J., & Mekalanos, J. (2012). Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 483(7388), 182-186.
17. Behzadi, P., & Behzadi, E. (2011). A study on apoptosis inducing effects of UVB irradiation in Pseudomonas aeruginosa. Roum Arch Microbiol Immunol, 70(2), 74-77.
18. Behzadi, P., & Behzadi, E. (2008). The microbial agents of urinary tract infections at central laboratory of Dr. Shariati Hospital, Tehran, Iran. Turk Klin Tip Bilim, 28(4), 445.
19. Berni, B., Soscia, C., Djermoun, S., Ize, B., & Bleves, S. (2019). A type VI secretion system trans-kingdom effector is required for the delivery of a novel antibacterial toxin in Pseudomonas aeruginosa. Frontiers in Microbiology, 10, 1218.
20. Billings, N., Ramirez Millan, M., Caldara, M., Rusconi, R., Tarasova, Y., Stocker, R., & Ribbeck, K. (2013). The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS pathogens, 9(8), e1003526.