AN OVERVIEW ON SILICA NANOPARTICLES ABILITY TO INDUCE AUTOPHAGY IN HUMAN LUNG ADENOCARCINOMA A549 EXAMINED WITH ULTRA-STRUCTURE ANALYSIS

Main Article Content

Fawziah A. AL-Salmi

Keywords

Beclin-1, LC3, caspase 3, silica nanoparticles, autophagy, apoptosis, human lung adenocarcinoma A549, ultra-structure analysis

Abstract

Metal nanoparticles are potential agents that cause autophagy dysfunction. Silica nanoparticles (SiNPs) can induce autophagy. Hence, the goal of this study is to provide evidence of the ability of silica nanoparticles to induce autophagy-associated apoptosis. In this report, silica nanoparticles exhibited dose-dependent cytotoxicity in lung adenocarcinoma A549 cells. Multiple assays verified that the activity of silica nanoparticles to induce autophagy blocked the autophagic flux at 50μg/ml. Furthermore, SiNPs impaired lysosomal function by damaging lysosomal ultrastructures. The results revealed that silica nanoparticles activated apoptosis with 26.39% and arrested the cell cycle at S phase due to an increase in the percentage of cells at S with 10 percent as compared with the negative control. Furthermore, the caspase 3 assay indicated that the activity of silica nanoparticles to induce apoptosis throughout the caspase cascades was evaluated by inducing oxidative stress (MDA), which is considered a lipid peroxidation marker. The rt-Pcr results showed down-regulation of LC3, while beclin 1 showed overexpression. Both LC3 and beclin 1 are autophagic genes that regulate the autophagy process. The immunohistochemistry showed a weaker Beclin 1. Transmission electron microscopy showed autophagosomes that are considered the benchmark for autophagy studies; the number of double-membrane autophagosomes and single-membrane autolysosomes was obviously observed in SiNP-treated A549. The current study provides a potential mechanism for autophagy dysfunction induced by silica nanoparticles in A549 cells.

Abstract 146 | pdf Downloads 69

References

1. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a cancer journal for clinicians, 68(1), 7-30.‏
2. Baker, S., Dahele, M., Lagerwaard, F. J., & Senan, S. (2016). A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiation oncology, 11, 1-14.‏
3. Rich, J. N. (2007). Cancer stem cells in radiation resistance. Cancer research, 67(19), 8980-8984.‏
4. Li, J., Liu, G., Li, L., Yao, Z., & Huang, J. (2020). Research progress on the effect of autophagy-lysosomal pathway on tumor drug resistance. Experimental cell research, 389(2), 111925.‏
5. Hou, G., Bai, Y., Jia, A., Ren, Y., Wang, Y., Lu, J., ... & Lu, Z. (2020). Inhibition of autophagy improves resistance and enhances sensitivity of gastric cancer cells to cisplatin. Canadian Journal of Physiology and Pharmacology, 98(7), 449-458.‏
6. Kang, R., Zeh, H., Lotze, M., & Tang, D. (2020). The multifaceted effects of autophagy on the tumor microenvironment. Tumor Microenvironment: Recent Advances, 99-114.‏
7. Mizushima N. The exponential growth of autophagy-related research:From the humble yeast to the Nobel Prize. FEBS Lett 2017; 591(5):681–9.
8. Ozpolat B, Benbrook DM. Targeting autophagy in cancer management strategies and developments. Cancer Manag Res 2015; 7: 291–9.
9. Vega-Rubín-de-Celis, S. (2019). The role of Beclin 1-dependent autophagy in cancer. Biology, 9(1), 4.‏
10. Mele L, Del Vecchio V, Liccardo D, Prisco C, Schwerdtfeger M, Robinson N, et al. The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 2020; 88: 102043.
11. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19(1): 12.
12. Hassan A, Elebeedy D, Matar ER, Fahmy Mohamed Elsayed A and Abd El Maksoud AI (2021) Investigation of Angiogenesis and Wound Healing Potential Mechanisms of Zinc Oxide Nanorods. Front. Pharmacol. 12:661217. doi: 10.3389/fphar.2021.661217.
13. Hassan, A., AL-Salmi, F. A., Saleh, M. A., Sabatier, J. M., Alatawi, F. A., Alenezi, M. A., ... & Sharaf, E. M. (2023). Inhibition Mechanism of Methicillin-Resistant Staphylococcus aureus by Zinc Oxide Nanorods via Suppresses Penicillin-Binding Protein 2a. ACS Omega.‏
14. Hassan A, Al-Salmi FA,Abuamara TMM, Matar ER, Amer ME,Fayed EMM, Hablas MGA, Mohammed TS, Ali HE,Abd EL-fattah FM, Abd Elhay WM,Zoair MA, Mohamed AF, Sharaf EM, Dessoky ES, Alharthi F, Althagafi HAEand Abd El Maksoud AI (2022)Ultrastructural analysis of zinc oxidenanospheres enhances anti-tumor efficacy against Hepatoma. Front. Oncol. 12:933750.doi: 10.3389/fonc.2022.933750.
15. Sharaf EM, Hassan A, AL-Salmi FA, Albalwe FM, Albalawi HMR, Darwish DB and Fayad E (2022) Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Front. Microbiol. 13:929491. doi: 10.3389/fmicb.2022.929491
16. Liu, J.; Li, C.; Li, F. Fluorescence turn-on chemodosimeter- functionalized mesoporous silica nanoparticles and their application in cell imaging. J. Mater. Chem. 2011, 21,7175-7181.
17. Ehlert, N.; Mueller, P.; Stieve, M.; Lenarz, T.; Behrens, P. Mesoporous silica films as a novel biomaterial: applications in the middle ear. Chem. Soc. Rev. 2013, 42, 3847-3861.
18. Salinas, A. J., Esbrit P, Vallet-Regi M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013, 1, 40-50.
19. Liong, M.; Lu. J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink,J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery.ACS Nano 2008, 2, 889-896.
20. Peynshaert, K. et al. Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical reviews 114, 7581–7609 (2014).
21. Popp, L. & Segatori, L. Differential autophagic responses to nano-sized materials. Current opinion in biotechnology 36, 129–136 (2015).
22. Tedja, R., Lim, M., Amal, R. & Marquis, C. Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS nano 6, 4083–4093 (2012).
23. Lopes, V. R. et al. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. Journal of nanobiotechnology 14, 1 (2016).
24. Moosavi, M. A. et al. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells. Sci. Rep. 6, 34413; doi: 10.1038/srep34413 (2016).
25. Rubinstein, A. D. & Kimchi, A. Life in the balance–a mechanistic view of the crosstalk between autophagy and apoptosis. Journal of cell science 125, 5259–5268 (2012).
26. Cao, Y. et al. Loss of autophagy leads to failure in megakaryopoiesis, megakaryocyte differentiation, and thrombopoiesis in mice.Experimental hematology 43, 488–494 (2015).
27. Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., et al. (2018). AMPK mediated BECN1 phosphorylation promotes ferroptosis by directly blockingSystem Xc(-) activity. Curr. Biol. 28, 2388–2399.e5. doi: 10.1016/j.cub.2018.05.094.
28. Menon MB and Dhamija S (2018) Beclin 1 Phosphorylation – at the Center of Autophagy Regulation. Front. Cell Dev. Biol. 6:137. doi: 10.3389/fcell.2018.00137.
29. Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015; 11(2):313–327.
30. Niu M, Zhong H, Shao H, et al. Shape-dependent genotoxicity of mesoporous silica nanoparticles and cellular mechanisms. J Nanosci Nanotechnol. 2016;16(3):2313–2318.
31. Lin YH, Chen YP, Liu TP, et al. Approach to deliver two antioxidant enzymes with mesoporous silica nanoparticles into cells. ACS Appl Mater Interfaces. 2016;8(28):17944–17954.
32. .Xi C, Zhou J, Du S, Peng S. Autophagy upregulation promotes macrophages to escape mesoporous silica nanoparticle (MSN)-induced NF-kappaB-dependent inflammation. Inflamm Res. 2016;65(4):325–341.
33. Saito T, Ichimura Y, Taguchi K, et al. P62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun. 2016;7:12030.
34. Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20.
35. Bai, D. P., Zhang, X. F., Zhang, G. L., Huang, Y. F., & Gurunathan, S. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. International journal of nanomedicine, 12, 6521.‏