THE GENDER-ORIENTED PERSPECTIVE IN THE DEVELOPMENT OF TYPE 2 DIABETES MELLITUS COMPLICATIONS; SGOP STUDY

Main Article Content

Darshan Kumar
Tony C. Scott
AbdulSami Quraishy
Syed Muhammad Kashif
Rashid Qadeer
Gul Anum

Keywords

gender, type 2 diabetes mellitus, sgop

Abstract

The SGOP study examines gender and ethnic differences in micro- and macrovascular complications of type 2 diabetes (T2DM). It aims to create gender-specific preventative and care methods to improve renal and cardiovascular outcomes. The observational study follows individuals with T2DM over time, ensuring representation of multiple genders and ethnicities. Data is obtained through medical records, interviews, and physical tests, focusing on micro- and macro-vascular problems. In our study the majority patients were male and Urdu speakers, with 30.66% having diabetes for less than 5 years and 37.66% for 5–10 years. Symptoms included polyuria, dyspnea, diarrhea, visual disruption, chest discomfort, unhealed wounds, erectile dysfunction, dyspepsia, hypertension, ischemic heart disease, and chronic liver disease. The ankle brachial index was normal for 57.33% of patients, with vascular disease detected in 15%. Fundoscopy findings showed normal findings in 50.66% of patients, with mild diabetic retinopathy identified in 37.33%.The study reveals a significant relationship between gender and HbA1c levels, ankle brachial index, and fundoscopy findings. However, in our study gender has no significant link with urine albumin-to-creatinine ratio (ACR) values. The study emphasizes monitoring and managing diabetes-related complications and identifying areas of focus for healthcare providers.It emphasizes the need for genderspecific preventative and care measures, enabling healthcare practitioners to tailor interventions, implement early detection techniques, and optimize patient care for better outcomes.

Abstract 172 | Pdf Downloads 102

References

1. Richter B, Hemmingsen B, Metzendorf MI, Takwoingi Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev. 2018;10(10): CD012661. Published 2018 Oct 29. doi: 10.1002/14651858.CD012661.pub2
2. Ramachandran A. Know the signs and symptoms of diabetes. Indian J Med Res. 2014; 140(5): 579-581.
3. IDF Diabetes Atlas. International Diabetes Federation. 6th ed. 2013. [accessed on January 6, 2014]. Available from: www. idf.org/diabetes atlas
4. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6(13):1246-1258. doi:10.4239/wjd. v6.i13.1246
5. Enikuomehin A, Kolawole BA, Soyoye OD, Adebayo JO, Ikem RT. Influence of gender on the distribution of type 2 diabetic complications at the obafemi awolowo teaching hospital, Ile-Ife, Nigeria. Afr Health Sci. 2020 Mar;20(1):294-307. doi: 10.4314/ahs.v20i1.35. PMID: 33402918; PMCID: PMC7750067.
6. Bahia LR, Araujo DV, Schaan BD, et al. The costs of type 2 diabetes mellitus outpatient care in the Brazilian public health system. Value Health. 2011;14(5 Suppl 1):S137-S140. doi: 10.1016/j. jval.2011.05.009
7. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne). 2018; 9:2. Published 2018 Jan 17. doi:10.3389/fendo.2018.00002
8. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi:10.1038/nrendo.2017.151
9. Jayawardena R, Ranasinghe P, Byrne NM, Soares MJ, Katulanda P, Hills AP. Prevalence and trends of the diabetes epidemic in South Asia: a systematic review and meta-analysis. BMC Public Health. 2012;12:380. Published 2012 May 25. doi:10.1186/1471-2458-12-380
10. Goff LM. Ethnicity and Type 2 diabetes in the UK. Diabet Med. 2019;36(8):927-938. doi:10.1111/dme.13895
11. Armengol GD, Hayfron-Benjamin CF, van den Born BH, Galenkamp H, Agyemang C. Microvascular and macrovascular complications in type 2 diabetes in a multiethnic population based in Amsterdam. The HELIUS study. Prim Care Diabetes. 2021;15(3):528-534. doi:10.1016/j.pcd.2021.02.008
12. Singh SS, Roeters-van Lennep JE, Lemmers RFH, et al. Sex difference in the incidence of microvascular complications in patients with type 2 diabetes mellitus: a prospective cohort study. Acta Diabetol. 2020;57(6):725-732. doi:10.1007/s00592-020-01489-6
13. Harreiter J, Roden M. Diabetes mellitus – Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2019) [Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019)]. Wien Klin Wochenschr. 2019;131(Suppl 1):6-15. doi:10.1007/ s00508-019-1450-4
14. Shubrook JH, Chen W, Lim A. Evidence for the Prevention of Type 2 Diabetes Mellitus. J Am Osteopath Assoc. 2018;118(11):730-737. doi:10.7556/jaoa.2018.158
15. Skyler JS. Diabetes mellitus: pathogenesis and treatment strategies. J Med Chem. 2004; 47(17): 4113-4117. doi:10.1021/jm0306273
16. Brevetti G, Bucur R, Balbarini A, Melillo E, Novo S, Muratori I, et al. Women and peripheral arterial disease: same disease, different issues. Journal of Cardiovascular Medicine. 2008; 9(4): 382–388.
17. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008 Nov;88(11):1254-64. doi: 10.2522/ptj.20080020. Epub 2008 Sep 18. PMID: 18801858; PMCID: PMC3870323.
18. Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, Moore LM, Rajpathak S. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016 Jul;32(7):1243-52. doi: 10.1185/03007995.2016.1168291. Epub 2016 Apr 4. PMID: 26986190.
19. Davis TM. Ethnic diversity in type 2 diabetes. Diabet Med. 2008 Aug;25 Suppl 2:52-6. doi: 10.1111/j.1464-5491.2008.02499.x. PMID: 18717980.
20. Ma Q, Liu H, Xiang G, Shan W, Xing W. Association between glycated haemoglobin A1c levels with age and gender in Chinese adults with no prior diagnosis of diabetes mellitus. Biomed Rep. 2016 Jun;4(6):737-740. doi: 10.3892/br.2016.643. Epub 2016 Mar 29. PMID: 27284415; PMCID: PMC4887772.
21. Devrajani, B. R., Shaikh, S., Lashari, N. A., Shah, S. Z. A., & Ali, S. A. (2017). Ankle Brachial Index (Abi) In Patients With Type 2 Diabetes Mellitus IAJGS 2017, 4 (11), 4353-4357.
22. Li M, Wang Y, Liu Z, Tang X, Mu P, Tan Y, Wang J, Lin B, Deng J, Peng R, Zhang R, He Z, Li D, Zhang Y, Yang C, Li Y, Chen Y, Liu X, Chen Y. Females with Type 2 Diabetes Mellitus Are Prone to Diabetic Retinopathy: A TwelveProvince Cross-Sectional Study in China. J Diabetes Res. 2020 Apr 21;2020:5814296. doi: 10.1155/2020/5814296. PMID: 32377522; PMCID: PMC7191394.
23. Sparrow JM, McLeod BK, Smith TD, Birch MK, Rosenthal AR. The prevalence of diabetic retinopathy and maculopathy and their risk factors in the non-insulintreated diabetic patients of an English town. Eye. 1993;7(1):158–163.
24. Ugoya SO, Echejoh GO, Ugoya TA, Agaba EI, Puepet FH, Ogunniyi A. Clinically diagnosed diabetic neuropathy: frequency, types and severity. Journal of the National Medical Association. 2006;98(11):1763–1766
25. Summary of revisions for the 2010 Clinical Practice Recommendations. Diabetes Care. 2010;33 Suppl 1(Suppl 1):S3. doi:10.2337/dc10-S003
26. KDOQI. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis. 2007;49(2 Suppl 2): S12-S154. doi:10.1053/j.ajkd.2006.12.005
27. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T. Macrovascular Complications of Type 2 Diabetes Mellitus. Curr Vasc Pharmacol. 2020;18(2):110-116. doi:10.2174/1570161117666190405165151
28. Scott, T. C.; Therani, M.; Wang, X. M. (2017). "Data Clustering with Quantum Mechanics". Mathematics. 5 (1): 5. doi:10.3390/math5010005
29. Maignan, A.; Scott, T. C. (2021). "A Comprehensive Analysis of Quantum Clustering : Finding All the Potential Minima" (PDF). International Journal of Data Mining & Knowledge Management Process. 11 (1): 33- 54. doi:10.5121/ijdkp.2021.11103.
30. Marina Meilă & Jianbo Shi, "Learning Segmentation by Random Walks", Neural Information Processing Systems 13 (NIPS 2000), 2001, pp. 873–879