INVESTIGATION OF NEUROLOGICAL ABNORMALITIES IN AZOOSPERMIA PATIENTS: NEUROACTIVE PROTEINS AND NEUROENDOCRINE ASSESSMENT
Main Article Content
Keywords
Reproductive system, Infertility, Neurological abnormalities, β secretase enzyme, BDNF, serotonin
Abstract
Aim: Close relationship between neuroendocrine and reproductive systems causes neural hormones play crucial role in fertility and reciprocally Gonadotropin hormone-releasing hormone (GnRH) dysregulation makes aging related neural damages. This study aimed to investigate the possible changes of neuroactive proteins, peptides and hormones in azoospermia patients. Azoospermia is one of the main cause of men infertility and known by reduction of GnRH production and release that accompanied by several neurological complications.
Methods: This study was performed on 33 azoospermia patients that half of them were smokers and 30 healthy control that have two or more child and half of them were smokers. The level of neurohormones and biochemical parameters were evaluated by specific ELISA kit in blood serum samples. Neuroactive proteins including neuropeptide Y (NPY), Brain-derived neurotrophic factor (BDNF), soluble amyloid precursor protein-alpha (sAPPα) and β-secretase (BACE1) circular concentrations were estimated by using specific ELISA kit according to antigen-antibody interaction.
Results and discussion: Results revealed between measured neurohormones, serotonin changed significantly as a result of azoospermia. While BDNF and NPY increased significantly in azoospermia patients in comparison with control and smoker patients showed more remarkable changes. This study could not detect significant alteration in sAPPα between four experimental groups. The circular concentration of BACE1 increased more than 1.5 folds in azoospermia patients, this increase was improved slightly in smoker patients. Our results highlighted participation of BACE1 in reproductive system as a multifunction protein. It seems decreased level of serotonin could motivate the further events so hormone replacement therapy seems to be helpful for limiting neurological side effects.
References
2. Sharma M, Leslie SW. Azoospermia. [Updated 2023 May 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK578191/
3. Gudeloglu A, Parekattil SJ. Update in the evaluation of the azoospermic male. Clinics (Sao Paulo). 2013;68 Suppl 1(Suppl 1):27-34. doi: 10.6061/clinics/2013(sup01)04.
4. Jennings KJ, de Lecea L. Neural and Hormonal Control of Sexual Behavior. Endocrinology. 2020 Oct 1;161(10):bqaa150. doi: 10.1210/endocr/bqaa150.
5. Blair JA, McGee H, Bhatta S, Palm R, Casadesus G. Hypothalamic-pituitary-gonadal axis involvement in learning and memory and Alzheimer's disease: more than "just" estrogen. Front Endocrinol (Lausanne). 2015 Mar 25;6:45. doi: 10.3389/fendo.2015.00045.
6. Marques P, Skorupskaite K, Rozario KS, et al. Physiology of GnRH and Gonadotropin Secretion. [Updated 2022 Jan 5]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279070/
7. Swerdloff RS, Bagatell CJ, Wang C, Anawalt BD, Berman N, Steiner B, Bremner WJ. Suppression of spermatogenesis in man induced by Nal-Glu gonadotropin releasing hormone antagonist and testosterone enanthate (TE) is maintained by TE alone. J Clin Endocrinol Metab. 1998 Oct;83(10):3527-33. doi: 10.1210/jcem.83.10.5184.
8. Marbouti L, Zahmatkesh M, Riahi E, Shafiee Sabet M. GnRH protective effects against amyloid β-induced cognitive decline: A potential role of the 17β-estradiol. Mol Cell Endocrinol. 2020 Dec 1;518:110985. doi: 10.1016/j.mce.2020.110985.
9. Fujitsuka, N., Asakawa, A., Morinaga, A. et al. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Mol Psychiatry 21, 1613–1623 (2016). https://doi.org/10.1038/mp.2015.220
10. Wickramasuriya N, Hawkins R, Atwood C, Butler T. The roles of GnRH in the human central nervous system. Horm Behav. 2022 Sep;145:105230. doi: 10.1016/j.yhbeh.2022.105230.
11. Short RA, Bowen RL, O'Brien PC, Graff-Radford NR. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin Proc. 2001 Sep;76(9):906-9. doi: 10.4065/76.9.906. PMID: 11560301.
12. Webber KM, Perry G, Smith MA, Casadesus G. The contribution of luteinizing hormone to Alzheimer disease pathogenesis. Clin Med Res. 2007 Oct;5(3):177-83. doi: 10.3121/cmr.2007.741.
13. Cocuzza M, Alvarenga C, Pagani R. The epidemiology and etiology of azoospermia. Clinics (Sao Paulo). 2013;68 Suppl 1(Suppl 1):15-26. doi: 10.6061/clinics/2013(sup01)03.
14. Chasseigneaux S, Allinquant B. Functions of Aβ, sAPPα and sAPPβ : similarities and differences. J Neurochem. 2012 Jan;120 Suppl 1:99-108. doi: 10.1111/j.1471-4159.2011.07584.x.
15. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015 Dec 10;11(6):1164-78. doi: 10.5114/aoms.2015.56342.
16. Kovac JR, Khanna A, Lipshultz LI. The effects of cigarette smoking on male fertility. Postgrad Med. 2015 Apr;127(3):338-41. doi: 10.1080/00325481.2015.1015928.
17. Eisenberg ML, Betts P, Herder D, Lamb DJ, Lipshultz LI. Increased risk of cancer among azoospermic men. Fertil Steril. 2013 Sep;100(3):681-5. doi: 10.1016/j.fertnstert.2013.05.022.
18. Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol. 2021 Oct;63:100928. doi: 10.1016/j.yfrne.2021.100928.
19. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017 Sep;31(9):1091-1120. doi: 10.1177/0269881117725915.
20. Bódis J, Sulyok E, Kőszegi T, Prémusz V, Várnagy Á, Koppán M. Serum and follicular fluid levels of serotonin, kisspeptin, and brain-derived neurotrophic factor in patients undergoing in vitro fertilization: an observational study : Neurohormones in patients receiving IVF. J Int Med Res. 2020 Apr;48(4):300060519879330. doi: 10.1177/0300060519879330.
21. Zaidise I, Friedman M, Lindenbaum ES, Askenazi R, Peretz BA, Paldi E. Serotonin and the ovarian hyperstimulation syndrome. Eur J Obstet Gynecol Reprod Biol. 1983 Apr;15(1):55-60. doi: 10.1016/0028-2243(83)90297-6.
22. Shobeiri P, Bagherieh S, Mirzayi P, Kalantari A, Mirmosayyeb O, Teixeira AL, Rezaei N. Serum and plasma levels of brain-derived neurotrophic factor in individuals with eating disorders (EDs): a systematic review and meta-analysis. J Eat Disord. 2022 Jul 18;10(1):105. doi: 10.1186/s40337-022-00630-w.
23. Ghasemian Nafchi H, Azizi Y, Halvaei I. The role of growth factors in human sperm parameters: A review of in vitro studies. Int J Reprod Biomed. 2022 Nov 2;20(10):807-818. doi: 10.18502/ijrm.v20i10.12265.
24. Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014 Feb;25(2):89-98. doi: 10.1016/j.tem.2013.10.006.
25. Martinowich, K., Lu, B. Interaction between BDNF and Serotonin: Role in Mood Disorders. Neuropsychopharmacol 33, 73–83 (2008). https://doi.org/10.1038/sj.npp.1301571
26. Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008 Jan;33(1):73-83. doi: 10.1038/sj.npp.1301571.
27. Kalra SP, Kalra PS. Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y-galanin-opioid network. Front Neuroendocrinol. 1996 Oct;17(4):371-401. doi: 10.1006/frne.1996.0010.
28. Shimizu H, Bray GA. Effects of neuropeptide Y on norepinephrine and serotonin metabolism in rat hypothalamus in vivo. Brain Res Bull. 1989 Jun;22(6):945-50. doi: 10.1016/0361-9230(89)90004-x.
29. Kumar R. Medical management of non-obstructive azoospermia. Clinics (Sao Paulo). 2013;68 Suppl 1(Suppl 1):75-9. doi: 10.6061/clinics/2013(sup01)08.
30. Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev. 2022 Jul;23(7):e13430. doi: 10.1111/obr.13430.