THE IMPACT OF MUSIC THERAPY ON ENHANCING COGNITIVE FUNCTION AND THE LEVELS OF BRAINDERIVED NEUROTROPHIC FACTOR IN THE PLASMA OF SCHIZOPHRENIC PATIENTS WITH RISPERIDONE TREATMENT

Main Article Content

Mikael Sri Pabilang
Andi Jayalangkara Tanra
Kristian Liaury
Andi Alfian Zainuddin
Erlyn Limoa
Irfan Idris
Saidah Syamsuddin
Sonny T. Lisal

Keywords

Schizophrenia, Music Therapy, Risperidone, Cognitive Function, Plasma BDNF

Abstract

This study aimed to investigate the effect of music therapy on the cognitive function and plasma BDNF levels of schizophrenia patients undergoing risperidone therapy. The study utilized quasi-experimental research and divided the 45 subjects into a treatment group and a control group. The treatment group received risperidone therapy and active and receptive music therapy for 4 weeks/12 sessions, while the control group received only risperidone therapy. Cognitive function was measured using the MoCA-Ina scale, and plasma BDNF levels were also measured. The study found that there was a significant increase in the MoCA-Ina score in both the treatment and control groups, but the treatment group had a higher increase. Additionally, the treatment group showed a significant increase in plasma BDNF levels, while the control group showed a decrease. Comparisons between the two groups showed that the addition of music therapy improved cognitive function, especially in the memory and abstraction domains. Furthermore, there was a significant correlation between changes in MoCA-Ina scores and plasma BDNF levels. Overall, combining music therapy with risperidone therapy can enhance the quality of life of schizophrenia patients by improving their cognitive function.

Abstract 266 | pdf Downloads 151

References

1. Gold C, Solli HP, Krüger V, Lie SA. Dose-response relationship in music therapy for people with serious mental disorders: Systematic review and meta-analysis. Clin Psychol Rev [Internet]. 2009;29(3):193–207. Available from: http://dx.doi.org/10.1016/j.cpr.2009.01.001
2. Geretsegger M, Mössler KA, Bieleninik L, Chen XJ, Heldal TO, Gold C. Music therapy for people with schizophrenia and schizophrenia-like disorders. Cochrane Database Syst Rev. 2017;2017(5).DOI: 10.1002/14651858.CD004025.pub4
3. Chien WT, Yip ALK. Current approaches to treatments for schizophrenia spectrum disorders, part I: An overview and medical treatments. Neuropsychiatr Dis Treat. 2013;9:1311–32. DOI: 10.2147/NDT.S37485
4. Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: Overview and treatment options. P T. 2014;39(9):638–45. PMID: 25210417; PMCID: PMC4159061
5. Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia Profile of cognitive impairments in schizophrenia. Neuropsychiatr Dis Treat. 2006;2(4):531–6. DOI: 10.2147/nedt.2006.2.4.531
6. Kusumawardhani A.A.A.A, Dharmono S DH. [Consensus on the Management of Schizophrenic Disorder. First. Jakarta, Indonesia: Association of Indonesian Mental Medicine Specialists (PDSKJI)]; 2011. 20–43 p. [Indonesia]
7. Kwon M, Gang M, Oh K. Effect of the group music therapy on brain wave, behavior, and cognitive function among patients with chronic schizophrenia. Asian Nurs Res (Korean Soc Nurs Sci) [Internet]. 2013;7(4):168–74. Available from: http://dx.doi.org/10.1016/j.anr.2013.09.005
8. Blood AJ, Zatorre RJ. Intensely Pleasurable Responses to Music Correlate. Proc Natl Acad Sci. 2001;98(20):11818–23. DOI: 10.1073/pnas.191355898. PMID: 11573015; PMCID: PMC58814
9. Boso M, Politi P, Barale F, Emanuele E. Neurophysiology and neurobiology of the musical experience. Funct Neurol. 2006;21(4):187–91. PMID: 17367577
10. Ulrich G, Houtmans T, Gold C. The additional therapeutic effect of group music therapy for schizophrenic patients: A randomized study. Acta Psychiatr Scand. 2007;116(5):362–70. DOI: 10.1111/j.1600-0447.2007.01073.x
11. Di Carlo P, Punzi G, Ursini G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr Genet [Internet]. 2019 Oct;29(5):200–10. Available from:
https://journals.lww.com/10.1097/YPG.0000000000000237
12. Nieto RR, Carrasco A, Corral S, Castillo R, Gaspar PA, Bustamante ML, et al. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front Psychiatry. 2021;12(June):1–9. DOI: 10.3389/fpsyt.2021.662407
13. Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: From neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry. 2013;4(JUN):1–11.
14. Nurjono M, Lee J, Chong SA. A review of brain-derived neurotrophic factor as a candidate biomarker in schizophrenia. Clin Psychopharmacol Neurosci. 2012;10(2):61–70. DOI: 10.9758/cpn.2012.10.2.61
15. He H, Yang M, Duan M, Chen X, Lai Y, Xia Y, et al. Music intervention leads to increased insular connectivity and improved clinical symptoms in schizophrenia. Front Neurosci. 2018;11(JAN):1–15. DOI: 10.3389/fnins.2017.00744
16. Stahl SM. Stahl’s Essential Psychopharmacology Neuroscientific Basis and Practical Applications [Internet]. Fourth. Stahl SM, editor. Britania Raya: Cambridge University Press; 2013. Available from:
https://www.google.co.id/books/edition/Stahl_s_Essential_Psychopharmacology/JaPMQEACAAJ?hl=id&kptab=overview
17. Mauri M., Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, et al. Clinical pharmacology of atypical antipsychotics: An update. EXCLI J [Internet]. 2014;13:1163–91. Available from: http://www.excli.de/vol13/Mauri_13102014_proof.pdf%5Cnhttp://ovidsp.ovid.com/ov idweb.cgi?T=JS&PAGE=reference&D=emed12&NEWS=N&AN=2014834064
18. Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules. 2018;23(8).
19. Alvianti H.N, Tri H.J W. [Differences in Effect of Mozard, Beethoven and Chopin Music Exposure During Pregnancy on the Number of Neuron Cells in the Cerebellum Rattus norvegicus Newborn]. 2019;Vol 11 No:41–5.[Indonesia]. DOI: 10.36089/job.v11i2.85
20. Solanki MS, Zafar M, Rastogi R. Music as a therapy: Role in psychiatry. Asian J Psychiatr [Internet]. 2013;6(3):193–9. Available from: http://dx.doi.org/10.1016/j.ajp.2012.12.001
21. Xing Y, Xia Y, Kendrick K, Liu X, Wang M, Wu D, et al. Mozart, Mozart Rhythm and Retrograde Mozart Effects: Evidences from Behaviours and Neurobiology Bases. Sci Rep. 2016;6(November 2015):1–11. DOI: 10.1038/srep18744
22. Wigram T, Pedersen IN BL. A Comprehensive Guide to Music Therapy. Theory, Clinical Practice, Research and Training [Internet]. London ; Philadelphia : Jessica Kingsley Publishers. 2002 [cited 2022 Jan 6]. Available from:
https://books.google.co.id/books?id=iWWYrTf0_VkC&pg=PA45&hl=id&source=gbs_toc_r&cad=4#v=onepage&q&f=false
23. James CE, Altenmüller E, Kliegel M, Krüger THC, Van De Ville D, Worschech F, et al. Train the brain with music (TBM): brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music. BMC Geriatr. 2020;20(1):1–19. DOI: 10.1186/s12877-020-01761-y
24. Stegemöller EL. Exploring a neuroplasticity model of music therapy. J Music Ther. 2014;51(3):211–27. DOI: 10.1093/jmt/thu023
25. Angelucci F, Ricci E, Padua L, Sabino A, Tonali PA. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus. Neurosci Lett. 2007;429(2–3):152–5. DOI: 10.1016/j.neulet.2007.10.005
26. Favalli G, Li J, Belmonte-de-Abreu P, Wong AHC, Daskalakis ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res. 2012;46(1):1– 11. DOI: 10.1016/j.jpsychires.2011.09.022
27. Gören JL. Brain-derived neurotrophic factor and schizophrenia. Ment Heal Clin. 2016 Nov 1;6(6):285–8. DOI: 10.9740/mhc.2016.11.285
28. Notaras M, Hill R, Van den Buuse M. A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Vol. 51, Neuroscience and Biobehavioral Reviews. Elsevier Ltd; 2015. p. 15–30. DOI: 10.1016/j.neubiorev.2014.12.016
29. Zanelli J, Mollon J, Sandin S, Morgan C, Dazzan P, Pilecka I, et al. Cognitive change in schizophrenia and other psychoses in the decade following the first episode. Am J Psychiatry. 2019;176(10):811–9. DOI: 10.1176/appi.ajp.2019.18091088
30. Kępińska AP, MacCabe JH, Cadar D, Steptoe A, Murray RM, Ajnakina O. Schizophrenia polygenic risk predicts general cognitive deficit but not cognitive decline in healthy older adults. Transl Psychiatry. 2020 Dec 1;10(1). DOI: 10.1038/S41398-020-01114-8
31. McIntosh AM, Gow A, Luciano M, Davies G, Liewald DC, Harris SE, et al. Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry [Internet]. 2013;73(10):938–43. Available from:
http://dx.doi.org/10.1016/j.biopsych.2013.01.011
32. Tanra AJ, Sabaruddin H, Liaury K, Zainuddin AA. Effect of adjuvant vitamin c on brain-derived neurotrophic factor levels and improvement of negative symptoms in schizophrenic patients. Open Access Maced J Med Sci. 2021;9(T3):353–7. DOI: 10.3889/oamjms.2021.7086
33. Atake K, Nakamura T, Ueda N, Hori H, Katsuki A, Yoshimura R. The impact of aging, psychotic symptoms, medication, and brain-derived neurotrophic factor on cognitive impairment in Japanese chronic schizophrenia patients. Front Psychiatry. 2018;9(MAY):1–8.
DOI: 10.3389/fpsyt.2018.00232
34. Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: A meta-Analysis. Psychol Med. 2019;49(12):1971–9.
DOI: 10.1017/S0033291719001685
35. Effendi E, Amin M, Utami N. [Correlation Between the Indonesian Version of the Montreal Cognitive Assessment Score (MoCA-Ina) and Serum BDNF (Brain-Derived Neurotropic Factor) Levels in Schizophrenic Patients]. Repos Institusi Univ Sumatera Utara [Internet]. 2018;1(3):82–91. Available from: http://repositori.usu.ac.id/handle/123456789/19759. [Indonesia]
36. Yang Y, Liu Y, Wang G, Hei G, Wang X, Li R, et al. Brain-derived neurotrophic factor is associated with cognitive impairments in first-episode and chronic schizophrenia. Psychiatry Res. 2019;273(December 2018):528–36. DOI: 10.1016/j.psychres.2019.01.051

Most read articles by the same author(s)