A Review on the Role of Actin Cytoskeleton genes of Podocytes in Childhood Nephrotic Syndrome

Main Article Content

Pricilla Charmine
Vettriselvi Venkatesan
Sangeetha Geminiganesan
Bollam Rangaswamy Nammalwar
Mohanapriya Chinambedu Dandapani

Keywords

Nephrotic syndrome; Podocyte; Actin cytoskeleton; Actin-associated proteins

Abstract

Podocytes play an essential role in establishing the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including nephrotic syndrome (NS), which often incites a progression to chronic kidney disease, affecting millions of patients worldwide. The role of podocytes in the pathogenesis of NS is best characterized by the discovery of genetic mutations, many of which regulate the actin cytoskeleton. Podocytes rely on an intact actin cytoskeleton to stabilise their unique cellular architecture and functions such as motility, cell division, intracellular transport, cellular trafficking of cargo and organelles and cell junction formation for the sustained function of glomerular filtration. This review briefly highlights the recent findings on role of actin cytoskeleton and the actin-associated proteins that take part in the assembly, maintenance and disassembly of actin cytoskeleton.

Abstract 250 | PDF Downloads 141

References

1. Kopp JB, Anders HJ, Susztak K, Podestà MA et al. Podocytopathies. Nat Rev Dis Primers. 2020;6(1):68.
2. Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulatepodocyte function. Curr Opin Nephrol Hypertens 2005;14:211–216.
3. Garg P. A review of podocyte biology. Am J Nephrol. 2018;47:3–13.
4. Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Disc. 2021;20(10):770–788.
5. Lennon R, Randles MJ, Humphries MJ. The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol. 2014;5:160–1177.
6. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol. 2015;26:258–269.
7. Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. Nat Genet. 2000;24:333–335.
8. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC: Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 2005;16:2941–2952.
9. Trimarchi H. Podocyturia: What is in a name?. J Transl Intern Med 2015;3(2), 51–56.
10. Campbell KN, Tumlin JA. Protecting Podocytes: A key target for therapy of focal segmental glomerulosclerosis. Amer J Nephrol. 2018; 47 (1) 14–29.
11. Greka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012; 74:299–323.
12. Blaine J, Dylewski J. Regulation of the actin cytoskeleton in podocytes. Cells 2020;9(7): 1700.
13. Orlando RA, Takeda T, Zak B, Schmieder S, Benoit VM, McQuistan T, Furthmayr H, Farquhar MG (2001) The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin. J Am Soc Nephrol 12:1589–1598.
14. Pollard TD and Borisy GG. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell;112(4), 453–465.
15. Schell and Huber, 2017) [20]. Schell C, Huber,TB. (2017). The evolving complexity of the podocyte cytoskeleton. J Amer Society Nephrol 28(11):3166–3174.
16. Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 2018;10(1):a018267.
17. Faul, 2014. The podocyte cytoskeleton: Key to a functioning glomerulus in health and disease. Liu Z-H, He JC (eds): Cell biology and pathology of podocyte. Contrib Nephrol. Basel, Karger, 2014, vol 183, pp 22–53.
18. Oh J, Reiser J, Mundel P. Dynamic (re)organization of the podocyte actin cytoskeleton in the nephrotic syndrome. Pediatr Nephrol (2004) 19:130–137.
19. Perico L, Conti S, Benigni A, Remuzzi G. Podocyte-actin dynamics in health and disease. Nat Rev Nephrol. 2016;12:692–710.
20. Kim JH, Konieczkowski M, Mukherjee A, Schechtman S, Khan S, Scheling JR, Ross MD, Bruggeman LA, Sedor JR. Podocyte injury induces nuclear translocation of WTIP via microtubule-dependent transport. J Biol Chem. 2010;285:9995–10004.
21. Campellone KG, Welch MD. A nucleator arms race. Cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11:237–251.
22. Lee S.H., Dominguez R. Regulation of actin cytoskeleton dynamics in cells. Mol. Cells. 2010;29:311–325.
23. Ransom RF, Lam NG, Hallett MA et al. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 2005; 68: 2473–2483.
24. Michaud JLR, Chaisson KM, Parks RJ, Kennedy CRJ. FSGS-associated a-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kid Intern. 2006;70:1054–1061.
25. Machuca E, Benoit G, Antignac C: Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 2009;18:R185–R194.
26. Patrakka J, Tryggvason K. New insights into the role of podocytes in proteinuria. Nat Rev Nephrol 2007;5:463-8.
27. Verma R, Kovari I, Soofi A. et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest. 2006;116:1346–1359.
28. Jones N, Blasutig IM, Eremina V, Ruston JM, Bladt F, Li H, Huang H, Larose l, Li SS, Takano T, Quaggin SE, Pawson T. NCK adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 2006;440:818–823.
29. Zhu J, Attias O, Aoudjit L, Jiang R, Kawachi H, Takano T: p21-activated kinases regulate actin remodeling in glomerular podocytes. Am J Physiol Renal Physiol. 2010;298:F951– F961.
30. Zhu J, Sun N, Aoudjit L, Li H, Kawachi H, Lemay S, Takano T. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int. 2008;73: 556-566.
31. Venkatareddy M, Cook L, Abuarquob K, Verma R, Garg P. Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin. PLoS One 2011;6:e28710.
32. Garg P, Verma R, Cook L, Soofi A, Venkatareddy M, George B, Mizuno K, Gurniak C, Witke W, Holzman LB: Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J Biol Chem. 2010;285:22676–22688.
33. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodrguez-Pe ́rez JC, Allen PG, Beggs AH, Pollak MR. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–256.
34. Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol. 219(2):135–145.
35. Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 2004; 58: 104–111.
36. Asanuma K, Kim K, Oh J et al. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. J Clin Invest 2005;115: 1188–1198
37. Rajfur Z, Roy P, Otey C et al. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 2002; 4: 286–293.
38. Fraley TS, Tran TC, Corgan AM et al. Phosphoinositide binding inhibits alpha-actinin bundling activity. J Biol Chem. 2003;278: 24039–24045.
39. Izaguirre G, Aguirre L, Hu YP et al. The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J Biol Chem. 2001; 276: 28676–28685
40. Furukawa R, Maselli A, Thomson SA et al. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 2003; 116: 187–196.
41. Bartram MP, Habbig S, Pahmeyer C, et al. Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet. 2016;25:1152–1164.
42. Weins, A. Schlondorff JS, Nakamura F, Denker BM, Hartwig JH, Thomas P. Stossel TP, Martin R. Pollak MR. Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA. 2007;104:16080–16085.
43. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–315.
44. Roselli S, Heidet L, Sich M et al. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol Cell Biol. 2004;24:550–560.
45. Kos CH, Le TC, Sinha S, et al. Mice deficient in alpha-actinin-4 have severe glomerular disease. J Clin Invest. 2003;111:1683–1690.
46. Van Duijn TJ, Anthony EC, Hensbergen PJ, Deelder AM, Hordijk PL: Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts. J Biol Chem. 2010;285:20137–20146.
47. Yaddanapudi S, Altintas MM, Kistler AD, Fernandez I, Moller CC, Wei C, et al: CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J Clin Invest 2011;121:3965–39.
48. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, Antignac C, Pollak M, Kopp JB, Winn MP, Shaw AS: Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–4137.
49. Dryer SE, Reiser J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol. 2010;299:F689–F701.
50. Tian D, Jacobo SM, Billing D et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 2010;3: ra77.
51. Huber TB, Schermer B, Benzing T. Podocin organizes ion channel-lipid super complexes: implications for mechanosensation at the slit diaphragm Nephron Exp Nephrol. 2007;106: e27-e31.
52. Mundel P, Heid HW, Mundel TM et al. Synaptopodin: an actin-associated protein intelencephalic dendrites and renal podocytes. J Cell Biol. 1997; 139: 193–204.
53. Patrie KM, Drescher AJ, Welihinda A et al. Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1. J Biol Chem. 2002; 277: 30183–30190.
54. Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol. 2006;8:485–491.
55. Kemeny E, Durmuller U, Nickeleit V, Gudat F, Mihatsch MJ (1997) Distribution of podocyte protein (44 KD) in different types of glomerular diseases. Virchows Arch. 431:425–430.
56. Srivastava T, Garola RE, Whiting JM, Alon US. Synaptopodin expression in idiopathic nephrotic syndrome of childhood. Kidney Int. 2001;59:118–125.
57. Hegsted, A., Yingling, C. V., & Pruyne, D. (2017). Inverted formins: A subfamily of atypical formins. Cytoskeleton 74(11), 405–419.
58. Chhabra ES, Higgs HN. INF2 is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J Biol Chem. 2006;281(36):26754–67.
59. Sun H, Schlondorff J, Higgs HN, Pollak MR: Inverted formin 2 regulates actin dynamics by antagonizing Rho/diaphanous-related formin signaling. J Am Soc Nephrol. 2013; 24:917–929.
60. Rollason R, Wherlock M, Heath JA, Heesom KJ, Saleem MA, Welsh GI. Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ alpha-1) and profilin 2. Biosci Rep. 2016;36:e00302.
61. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2017;36:451–77.
62. Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18, 54.
63. Welsh GI , Saleem MA. The podocyte cytoskeleton - key to a functioning glomerulus is health and disease. Nat Rev Nephrol. 2011;8:14-21. 64. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G. (2009). Coordination of Rho GTPase activities during cell protrusion. Nature. 461(7260):99–103.
65. Forget MA, Desrosiers RR, Gingras D, Béliveau R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem J. 2002;361(2):243-54.
66. Millard TH, Sharp SJ. Machesky LM. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 2004;380(1):1–17.
67. Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol. 2004;24(12):5269-80.
68. Kovar DR. Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol. 2006;18(1):11–17.
69. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635.
70. Garg P, Verma R, Nihalani D, et al. Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol. 2007;27:8698–8712.
71. Nielsen JS, McNagny KM. The role of podocalyxin in health and disease. J Am Soc. Nephrol. 2009;20(8):1669–1676.
72. Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T, McNagny KM. Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med. 2001;194(1):13–27.
73. Kang HG, Lee M, Lee KB, Hughes M, Kwon BS, Lee S, McNagny KM., Ahn YH, Ko JM, Ha IS, et al. Loss of podocalyxin causes a novel syndromic type of congenital nephrotic syndrome. Exp. Mol. Med. 2017;49(12):e414.
74. Sever S, Schiffer M. Actin dynamics at focal adhesions: A common endpoint and putative therapeutic target for proteinuric kidney diseases. Kidney Int. 2018;93(6):1298–1307.
75. Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, Buelli S, Tomasoni S, Piras R, Krendel M, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 2011;365(4):295–306.
76. Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene. 2018;664:152–167.
77. Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, Wu G, Homstad A, Sparks MA, Gomez J. et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J. Am. Soc. Nephrol. 2014;25(9):1991–2002.
78. Hall G, Lane BM, Khan K, Pediaditakis I, Xiao J, Wu G, Wang L, Kovalik ME, Chryst-Stang M, Davis EE. et al. The human FSGS-causing ANLN R431C mutation induces dysregulated PI3K/AKT/mTOR/Rac1 signaling inpodocytes. J Am Soc Nephrol. 2018;29 (8):2110–2122.
79. Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever, S. Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J. 2010;29(21):3593–3606.

Most read articles by the same author(s)