Anatomical Evaluation of The Corpus Callosum in Multiple Sclerosis Patients Using MRI

Main Article Content

Hussam Alabdullah
Mennan Ece Pirzirenli
Aslı Tanrıvermiş Sayıt
Aymen Warille

Keywords

corpus callosum, multiple sclerosis, MRI, brain atrophy

Abstract

Background: Multiple sclerosis MS is a chronic, complicated disease of still unknown exact etiology that impacts the whole central nervous system (CNS). Corpus callosum atrophy in MS patients may serve as a disease-progression biomarker because it is a representation of the permanent process of degenerative injury. We designed this study with the aim of addressing the anatomical changes of the corpus callosum in multiple sclerosis patients using easy linear MRI measurements and comparing the results with those in the normal population.
Methods: MRI images for 50 participants (25 MS patients and 25 healthy controls) were collected. The chosen MRI scans were carried out between 2017 and 2021. Five anatomical parameters of the corpus callosum were measured in the best MRI mid-sagittal plane.
Results: In the patient group, the mean thickness of genu G, body B, splenium S, anterior-posterior diameter AP, and corpus callosum index CCI were 9.75 ±1.85mm, 4.83±1.17 mm, 9.96±2.1 mm, 66.24 ±4.33 mm, and 0.37 ±0.06 respectively. In the control group, the mean G, B, S, AP, and CCI were 12.9 ±1.86mm, 7.54 ±1.19mm, 13.01±1.53mm, 69.72±4.47mm, and 0.48±0.04 respectively. The results of the t-test revealed that there is a statistically significant difference between the two groups for G (P=0.000), B (P=0.000), S (P=0.000), AP (P=0.008), and CCI (P=0.000). All dimensions were smaller in the patients group than in the control group.
Conclusion: Morphometric evaluation revealed that patients with MS had significantly thinner CC segments than their neurologically normal counterparts. We believe that these findings may serve as a baseline to guide subsequent analyses with other groups, as well as studies of forensic and MS-related alterations in the CC in Turkish young adults.

Abstract 126 | pdf Downloads 166

References

1. Allouh, M. Z., Al Barbarawi, M. M., Ali, H. A., Mustafa, A. G., & Alomari, S. O. (2020). Morphometric Analysis of the Corpus Callosum According to Age and Sex in Middle Eastern Arabs: Racial Comparisons and Clinical Correlations to Autism Spectrum Disorder. Frontiers in Systems Neuroscience, 14(June), 1–11. https://doi.org/10.3389/fnsys.2020.00030
2. Amiri, H., de Sitter, A., Bendfeldt, K., Battaglini, M., Gandini Wheeler-Kingshott, C. A. M., Calabrese, M., Geurts, J. J. G., Rocca, M. A., Sastre-Garriga, J., Enzinger, C., de Stefano, N., Filippi, M., Rovira, Á., Barkhof, F., & Vrenken, H. (2018). Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. NeuroImage: Clinical, 19(2017), 466–475.https://doi.org/10.1016/j.nicl.2018.04.023
3. Bermel, R. A., & Bakshi, R. (2006). The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurology, 5(2), 158–170. https://doi.org/10.1016/S1474-4422(06)70349-0
4. Bermel, R. A., Bakshi, R., Tjoa, C., Puli, S. R., & Jacobs, L. (2002). Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Archives of Neurology, 59(2), 275–280. https://doi.org/10.1001/archneur.59.2.275
5. Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychology Review, 15(2), 59–71. https://doi.org/10.1007/s11065-005-6252-y
6. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, & Thompson AJ. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology, 93(11), 1022–1024. http://www.msif.org/about-ms/publications-
7. Constant, D., & Ruther, H. (1996). Sexual dimorphism in the human corpus callosum? A comparison of methodologies. Brain Research, 727(1–2), 99–106. https://doi.org/10.1016/0006-8993(96)00358-7
8. Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis – a review. European Journal of Neurology, 26(1), 27–40. https://doi.org/10.1111/ene.13819
9. Figueira, F. F. A., Dos Santos, V. S., Figueira, G. M. A., & Da Silva, Â. C. M. (2007). Corpus callosum index: A practical method for long-term follow-up in multiple sclerosis. Arquivos de Neuro-Psiquiatria, 65(4 A), 931–935. https://doi.org/10.1590/s0004-282x2007000600001
10. Giovannoni, G., Butzkueven, H., Hobart, J., Kobelt, G., Sormani, M. P., Thalheim, C., Traboulsee, A., Vollmer, T., Hobart, J., Kobelt, G., Pepper, G., & Sormani, M. P. (2016). Author ’ s Accepted Manuscript Brain health : time matters in multiple sclerosis. Multiple Sclerosis and Related Disorders. https://doi.org/10.1016/j.msard.2016.07.003
11. Granberg, T., Shams, S., Aspelin, P., Kristoffersen-wiberg, M., & Fredrikson, S. (2015). MRI-Defined Corpus Callosal Atrophy in Multiple Sclerosis : A Comparison of Volumetric Measurements , Corpus Callosum Area. Lv, 1–6. https://doi.org/10.1111/jon.12237
12. Heliopoulos, I., Papathanasopoulos, P., & Dardiotis, E. (2015). The effect of disease-modifying therapies on brain atrophy in patients with clinically isolated syndrome : a systematic review and meta-analysis. https://doi.org/10.1177/1756285615600381
13. Karakaş, P., Koç, Z., Koç, F., & Gülhal Bozkir,
M. (2011). Morphometric MRI evaluation of corpus callosum and ventricles in normal adults. Neurological Research, 33(10), 1044–1049. https://doi.org/10.1179/1743132811Y.0000000030
14. Lamantia, A., & Haven, N. (1990). Axon Overproduction and Elimination Developing Rhesus Monkey in the Corpus Callosum of the. July.
15. Lutz, T., Bellenberg, B., Schneider, R., Weiler, F., Köster, O., & Lukas, C. (2017). Central Atrophy Early in Multiple Sclerosis: Third Ventricle Volumetry versus Planimetry. Journal of Neuroimaging, 27(3), 348–354. https://doi.org/10.1111/jon.12410
16. Perez-Alvarez, A. I., Garcia-Rua, A., Suarez-Santos, P., Castanon-Apilanez, M., Ameijide-Sanluis, E., Saiz-Ayala, A., Meilan-Martinez, A., Villafani-Echazu, W. J., Gonzalez-Delgado, M., & Oliva-Nacarino, P. (2018). Valoracion de la atrofia cerebral en la esclerosis multiple mediante el indice de cuerpo calloso [Appraisal of cerebral atrophy in multiple sclerosis by means of the corpus callosum index]. Revista de neurologia, 67(11), 417–424.
17. Pérez-Martín, M. Y., González-Platas, M., Jiménez-Sosa, A., Plata-Bello, J., & López-Segura, A. (2020). Normative Data of the Corpus Callosum Index and Discriminant Validity in Patients with Multiple Sclerosis. J Neurol Neurosci, 11(4), 322. https://doi.org/10.36648/2171-6625.11.1.322
18. Sakai, T., Mikami, A., Suzuki, J., Miyabe-Nishiwaki, T., Matsui, M., Tomonaga, M., Hamada, Y., Matsuzawa, T., Okano, H., & Oishi, K. (2017). Developmental trajectory of the corpus callosum from infancy to the juvenile stage: Comparative MRI between chimpanzees and humans. PLoS ONE, 12(6), 1–22. https://doi.org/10.1371/journal.pone.0179624
19. Sharma, J., Sanfilipo, M. P., Benedict, R. H. B., Weinstock-Guttman, B., Munschauer, F. E., & Bakshi, R. (2004). Whole-brain atrophy in multiple sclerosis measured by automated versus semiautomated MR imaging segmentation. American Journal of Neuroradiology, 25(6), 985–996.
20. Suganthy, J., Raghuram, L., Antonisamy, B., Vettivel, S., Madhavi, C., & Koshi, R. (2003). Gender- and age-related differences in the morphology of the corpus callosum. Clinical Anatomy, 16(5), 396–403. https://doi.org/10.1002/ca.10161
21. Vasileiadis, G. K., Dardiotis, E., Mavropoulos, A., Tsouris, Z., & Tsimourtou, V. (2018). Regulatory B and T lymphocytes in multiple sclerosis : friends or foes ? Autoimmunity Highlights, 1–15. https://doi.org/10.1007/s13317-018-0109-x