A meta-analysis study to comparing MR spectroscopy and Intravoxel Incoherent motion (DWI) in the differentiation of benign and malignant breast lesions
Main Article Content
Keywords
Diffusion-weighted imaging, Intravoxel incoherent motion (IVIM), magnetic resonance spectroscopy , Classification tumors of the breast
Abstract
Background: Advanced diffusion models are none-contrast MR imaging techniques for the assessment of breast lesions. The value of accuracy in detecting BC in the diagnosis of breast cancer has not been systematically evaluated. The study aimed, using meta-analysis approach, to examine the diagnostic ability of MRI spectroscopy and intravoxel incoherent motion (DWI) used to assess the differentiation between benign and malignant breast lesions.
Materials and Methods: The study searched PubMed, MEDLINE, Cochrane, Embase, Scopus, Google Scholar, was used to find recent original studies that assessed the use of Non-Gaussian DWI model (Intravoxel Incoherent Motion; perfusion fraction ‘f’ ; real diffusivity ‘D’ and pseudo-diffusivity ‘D*’) and spectroscopy (1H) for the detection of breast cancer. The standardized mean difference (SMD) , pooling the sensitivity, specificity, and area under the curve were used to organize and summarize the studies. The QUADAS-2 and QUIPS programs were used to assess the quality of the included studies.
Results: fifty studies were included, with IVIM and spectroscopy being the most investigated . The presence of significant heterogeneity (P˂0.05) was observed for all parameters. The results showed high differentiation ability found between malignant and benign cancer, where, malignant cancer has significantly lower D values (SMD=-1.54; P<0.0001) than benign cancer . While D*, f, and 1H values were higher than benign caner (SMD=0.08, 0.71, and 1.42; P=0.0001). The best diagnostic performance was shown for D (sensitivity=86%; specificity= 0.86; AUC≤0.92) and for 1H, f, and D* in breast tumors’ differential diagnosis (sensitivity=0.83, 0.78, 0.69; specificity= 0.76, 0.69, 0.63; AUC 0.73), respectively.
Conclusion: Our findings showed that their parameters play a potential role in differentiating breast tumours. Superior diagnostic accuracy, alongside, the high sensitivity and specificity for diffusion-weighted advanced imaging means that these approaches can be used as a suitable method in differentiating breast tumors.
References
2. Aberle DR, Chiles C, Gatsonis C, Hillman BJ, Johnson CD, McClennan BL, et al. Imaging and cancer: research strategy of the American College of Radiology Imaging Network. Radiology. 2005;235(3):741-51.
3. Boisserie-Lacroix M, Hurtevent-Labrot G, Ferron S, Lippa N, Bonnefoi H, Mac Grogan G. Correlation between imaging and molecular classification of breast cancers. Diagnostic and interventional imaging. 2013;94(11):1069-80.
4. Morris EA. Diagnostic breast MR imaging: current status and future directions. Radiologic Clinics of North America. 2007;45(5):863-80.
5. Plana MN, Carreira C, Muriel A, Chiva M, Abraira V, Emparanza JI, et al. Magnetic resonance imaging in the preoperative assessment of patients with primary breast cancer: systematic review of diagnostic accuracy and meta-analysis. European radiology. 2012;22(1):26-38.
6. Arian A, Dinas K, Pratilas GC, Alipour S. The breast imaging-reporting and data system (BI-RADS) Made Easy. Iranian Journal of Radiology. 2022;19(1).
7. Arian A, Delazar S, Aghasi M, Jahanbin B, Ahmadinejad N. Does MRI have added value in ultrasound-detected BIRADS-3 breast masses in candidates for assisted reproductive therapy? European Journal of Radiology Open. 2023;10:100474.
8. Brandão AC, Lehman CD, Partridge SC. Breast magnetic resonance imaging: diffusion-weighted imaging. Magnetic Resonance Imaging Clinics. 2013;21(2):321-36.
9. Arian A, Ahmadi E, Gity M, Setayeshpour B, Delazar S. Diagnostic value of T2 and diffusion-weighted imaging (DWI) in local staging of endometrial cancer. Journal of Medical Imaging and Radiation Sciences. 2023.
10. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images. NMR in Biomedicine. 1995;8(7):333-44.
11. Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102-25.
12. Woodhams R, Ramadan S, Stanwell P, Sakamoto S, Hata H, Ozaki M, et al. Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics. 2011;31(4):1059-84.
13. Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona-Villalobos CP, Kamel IR, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31(6):1773-91.
14. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401-7.
15. Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. American Journal of Roentgenology. 2011;196(6):1351-61.
16. Le Bihan D, Breton E, Lallemand D, Aubin M, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497-505.
17. Suo S, Lin N, Wang H, Zhang L, Wang R, Zhang S, et al. Intravoxel incoherent motion diffusion‐weighted MR imaging of breast cancer at 3.0 tesla: comparison of different curve‐fitting methods. Journal of Magnetic Resonance Imaging. 2015;42(2):362-70.
18. Kim Y, Ko K, Kim D, Min C, Kim SG, Joo J, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes. The British journal of radiology. 2016;89(1063):20160140.
19. Sigmund E, Cho G, Kim S, Finn M, Moccaldi M, Jensen J, et al. Intravoxel incoherent motionimaging of tumor microenvironment in locally advanced breast cancer. Magnetic resonance in medicine. 2011;65(5):1437-47.
20. Sardanelli F, Fausto A, Di Leo G, De Nijs R, Vorbuchner M, Podo F. In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. American journal of roentgenology. 2009;192(6):1608-17.
21. Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? American Journal of Roentgenology. 2009;193(3):840-9.
22. Sharma U, Jagannathan NR. In vivo MR spectroscopy for breast cancer diagnosis. BJR| Open. 2019;1(1):20180040.
23. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine. 2011;155(8):529-36.
24. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Annals of internal medicine. 2013;158(4):280-6.
25. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629-34.
26. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557-60.
27. He M, Ruan H, Ma M, Zhang Z. Application of diffusion weighted imaging techniques for differentiating benign and malignant breast lesions. Frontiers in Oncology. 2021;11:694634.
28. Meng N, Wang XJ, Sun J, Huang L, Wang Z, Wang KY, et al. Comparative Study of Amide Proton Transfer‐Weighted Imaging and Intravoxel Incoherent Motion Imaging in Breast Cancer Diagnosis and Evaluation. Journal of Magnetic Resonance Imaging. 2020;52(4):1175-86.
29. Chan S-W, Chang Y-C, Huang P-W, Ouyang Y-C, Chang Y-T, Chang R-F, et al. Breast tumor detection and classification using intravoxel incoherent motion hyperspectral imaging techniques. BioMed research international. 2019;2019.
30. Song SE, Cho KR, Seo BK, Woo OH, Park KH, Son YH, et al. Intravoxel incoherent motion diffusion‐weighted MRI of invasive breast cancer: Correlation with prognostic factors and kinetic features acquired with computer‐aided diagnosis. Journal of Magnetic Resonance Imaging. 2019;49(1):118-30.
31. Zhao M, Fu K, Zhang L, Guo W, Wu Q, Bai X, et al. Intravoxel incoherent motion magnetic resonance imaging for breast cancer: a comparison with benign lesions and evaluation
of heterogeneity in different tumor regions with prognostic factors and molecular classification. Oncology Letters. 2018;16(4):5100-12.
32. Mao X, Zou X, Yu N, Jiang X, Du J. Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions. Medicine. 2018;97(26).
33. Jiang L, Lu X, Hua B, Gao J, Zheng D, Zhou Y. Intravoxel incoherent motion diffusion-weighted imaging versus dynamic contrast-enhanced magnetic resonance imaging: comparison of the diagnostic performance of perfusion-related parameters in breast. Journal of Computer Assisted Tomography. 2018;42(1):6-11.
34. Iima M, Kataoka M, Kanao S, Onishi N, Kawai M, Ohashi A, et al. Intravoxel incoherent motion and quantitative non-Gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology. 2018;287(2):432-41.
35. Suo S, Cheng F, Cao M, Kang J, Wang M, Hua J, et al. Multiparametric diffusion‐weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors. Journal of Magnetic Resonance Imaging. 2017;46(3):740-50.
36. Lin N, Chen J, Hua J, Zhao J, Zhao J, Lu J. Intravoxel incoherent motion MR imaging in breast cancer: quantitative analysis for characterizing lesions. Int J Clin Exp Med. 2017;10(1):1705-14.
37. Kawashima H, Miyati T, Ohno N, Ohno M, Inokuchi M, Ikeda H, et al. Differentiation between luminal-A and luminal-B breast cancer using intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging. Academic Radiology. 2017;24(12):1575-81.
38. Ma D, Lu F, Zou X, Zhang H, Li Y, Zhang L, et al. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions. Magnetic Resonance Imaging. 2017;36:175-9.
39. Chen W, Zhang J, Long D, Wang Z, Zhu JM. Optimization of intra‐voxel incoherent motion measurement in diffusion‐weighted imaging of breast cancer. Journal of Applied Clinical Medical Physics. 2017;18(3):191-9.
40. Lee YJ, Kim SH, Kang BJ, Kang YJ, Yoo H, Yoo J, et al. Intravoxel incoherent motion (IVIM)‐derived parameters in diffusion‐weighted MRI: Associations with prognostic factors in invasive ductal carcinoma. Journal of Magnetic Resonance Imaging. 2017;45(5):1394-406.
41. Wang Q, Guo Y, Zhang J, Wang Z, Huang M, Zhang Y. Contribution of IVIM to conventional dynamic contrast-enhanced and diffusion-weighted MRI in differentiating benign from malignant breast masses. Breast Care. 2016;11(4):254-8.
42. Liu C, Wang K, Chan Q, Liu Z, Zhang J, He H, et al. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. European radiology. 2016;26:3888-98.
43. Cho GY, Moy L, Kim SG, Baete SH, Moccaldi M, Babb JS, et al. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. European radiology. 2016;26:2547-58.
44. Dijkstra H, Dorrius MD, Wielema M, Pijnappel RM, Oudkerk M, Sijens PE. Quantitative DWI implemented after DCE‐MRI yields increased specificity for BI‐RADS 3 and 4 breast lesions. Journal of Magnetic Resonance Imaging. 2016;44(6):1642-9.
45. Iima M, Yano K, Kataoka M, Umehana M, Murata K, Kanao S, et al. Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Investigative radiology. 2015;50(4):205-11.
46. Fusco R, Sansone M, Filice S, Granata V, Catalano O, Amato DM, et al. Integration of DCE-MRI and DW-MRI quantitative parameters for breast lesion classification. BioMed research international. 2015;2015.
47. Bokacheva L, Kaplan JB, Giri DD, Patil S, Gnanasigamani M, Nyman CG, et al. Intravoxel incoherent motion diffusion‐weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. Journal of Magnetic Resonance Imaging. 2014;40(4):813-23.
48. Liu C, Liang C, Liu Z, Zhang S, Huang B. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. European journal of radiology. 2013;82(12):e782-e9.
49. Sigmund EE, Cho GY, Kim S, Finn M, Moccaldi M, Jensen JH, et al. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magnetic resonance in medicine. 2011;65(5):1437-47.
50. Jacobs MA, Barker PB, Argani P, Ouwerkerk R, Bhujwalla ZM, Bluemke DA. Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: a feasibility study. Journal of Magnetic Resonance Imaging: An
Official Journal of the International Society for Magnetic Resonance in Medicine. 2005;21(1):23-8.
51. Baek HM, Chen JH, Yu HJ, Mehta R, Nalcioglu O, Su MY. Detection of choline signal in human breast lesions with chemical‐shift imaging. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2008;27(5):1114-21.
52. Kim J-K, Park S-H, Lee HM, Lee Y-H, Sung N-K, Chung D-S, et al. In vivo 1H-MRS evaluation of malignant and benign breast diseases. The Breast. 2003;12(3):179-82.
53. Lipnick S, Liu X, Sayre J, Bassett LW, DeBruhl N, Thomas MA. Combined DCE‐MRI and single‐voxel 2D MRS for differentiation between benign and malignant breast lesions. NMR in Biomedicine. 2010;23(8):922-30.
54. Gruber S, Debski B-K, Pinker K, Chmelik M, Grabner G, Helbich T, et al. Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology. 2011;261(3):752-61.
55. Montemezzi S, Cavedon C, Camera L, Meliadò G, Caumo F, Baglio I, et al. 1 H-MR spectroscopy of suspicious breast mass lesions at 3T: a clinical experience. La radiologia medica. 2017;122:161-70.
56. Suppiah S, Rahmat K, Mohd-Shah M, Azlan C, Tan L, Aziz Y, et al. Improved diagnostic accuracy in differentiating malignant and benign lesions using single-voxel proton MRS of the breast at 3 T MRI. Clinical radiology. 2013;68(9):e502-e10.
57. Ramazan A, Demircioglu O, Ugurlu U, Kaya H, Aribal E. Efficacy of single voxel 1H MR spectroscopic imaging at 3 T for the differentiation of benign and malign breast lesions. Clinical Imaging. 2016;40(5):831-6.
58. Aribal E, Asadov R, Ramazan A, Ugurlu MÜ, Kaya H. Multiparametric breast MRI with 3T: Effectivity of combination of contrast enhanced MRI, DWI and 1H single voxel spectroscopy in differentiation of Breast tumors. European Journal of Radiology. 2016;85(5):979-86.
59. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE. Human breast lesions: characterization with proton MR spectroscopy. Radiology. 1998;209(1):269-75.
60. Thakur SB, Brennan SB, Ishill NM, Morris EA, Liberman L, Dershaw DD, et al. Diagnostic usefulness of water‐to‐fat ratio and choline concentration in malignant and benign breast lesions and normal breast parenchyma: an in vivo 1H MRS study. Journal of Magnetic Resonance Imaging. 2011;33(4):855-63.
61. Dorrius MD, Pijnappel RM, Van Der Weide Jansen M, Jansen L, Kappert P, Oudkerk M, et al. The added value of quantitative multi-voxelMR spectroscopy in breast magnetic resonance imaging. European radiology. 2012;22:915-22.
62. Sah RG, Sharma U, Parshad R, Seenu V, Mathur SR, Jagannathan NR. Association of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status with total choline concentration and tumor volume in breast cancer patients: An MRI and in vivo proton MRS study. Magnetic resonance in medicine. 2012;68(4):1039-47.
63. Mizukoshi W, Kozawa E, Inoue K, Saito N, Nishi N, Saeki T, et al. 1 H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches. European radiology. 2013;23:75-83.
64. Meisamy S, Bolan PJ, Baker EH, Pollema MG, Le CT, Kelcz F, et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology. 2005;236(2):465-75.
65. Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—initial results. Radiology. 2001;220(1):40-6.
66. Tse GM, Cheung HS, Pang L-M, Chu WC, Law BK, Kung FY, et al. Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. American Journal of Roentgenology. 2003;181(5):1267-72.
67. Huang W, Fisher PR, Dulaimy K, Tudorica LA, O’Hea B, Button TM. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology. 2004;232(2):585-91.
68. Kousi E, Tsougos I, Vasiou K, Theodorou K, Poultsidi A, Fezoulidis I, et al. Magnetic resonance spectroscopy of the breast at 3T: pre-and post-contrast evaluation for breast lesion characterization. The scientific world Journal. 2012;2012.
69. Bartella L, Morris EA, Dershaw DD, Liberman L, Thakur SB, Moskowitz C, et al. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology. 2006;239(3):686-92.
70. Vassiou K, Tsougos I, Kousi E, Vlychou M, Athanasiou E, Theodorou K, et al. Application value of 3T 1H-magnetic resonance spectroscopy in diagnosing breast tumors. Acta Radiologica. 2013;54(4):380-8.
71. Başara I, Örgüç Ş, Coşkun T. Single voxel in vivo proton magnetic resonance spectroscopy of breast lesions: experience in 77 cases. Diagn Interv Radiol. 2013;19(3):221-6.
72. Su M, Baik H, Yu HJ, Chen J-h, Mehta RS, Nalcioglu O. Comparison of choline and pharmacokinetic parameters in breast cancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI. TECHNOLOGY IN CANCER RESEARCH AND TREATMENT. 2006;5(4):401.
73. Chen X, Li W-l, Zhang Y-l, Wu Q, Guo Y-m, Bai Z-l. Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC cancer. 2010;10(1):1-11.
74. Shi R-y, Yao Q-y, Wu L-m, Xu J-r. Breast lesions: diagnosis using diffusion weighted imaging at 1.5 T and 3.0 T—systematic review and meta-analysis. Clinical breast cancer. 2018;18(3):e305-e20.
75. Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE. Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. European radiology. 2014;24:2835-47.
76. Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR in Biomedicine. 2017;30(11):e3780.
77. Baltzer P, Mann RM, Iima M, Sigmund EE, Clauser P, Gilbert FJ, et al. Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. European radiology. 2020;30:1436-50.
78. Bolan PJ, Meisamy S, Baker EH, Lin J, Emory T, Nelson M, et al. In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2003;50(6):1134-43.
79. Haddadin IS, McIntosh A, Meisamy S, Corum C, Snyder ALS, Powell NJ, et al. Metabolite quantification and high‐field MRS in breast cancer. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo. 2009;22(1):65-76.