A comprehensive review of the selected Flora of Iran on improving symptoms of Chronic Obstructive Pulmonary Disease (COPD)

Main Article Content

Ali Lotfi Orimi
Alireza Shahriary
Reza Mohtashami
Parsa Ghorbanpourkhamse
Ebrahim Salimi-Sabour
Sakineh Dadashpour

Keywords

Chronic Obstructive Pulmonary Disease, COPD, Mustard Gas, Mustard Lung, Herbal Medicine, Phytotherapy

Abstract

A partially irreversible expiratory airflow restriction, uncontrolled chronic inflammation, and emphysematous lung damage are the hallmarks of chronic obstructive pulmonary disease (COPD), a leading cause of mortality and morbidity in the globe. The standard treatments for COPD are still palliative, and there are no regenerative methods for disease management currently, despite the fact that it is a constantly expanding worldwide healthcare concern. Mustard gas is an alkylating chemical warfare agent that has respiratory side effects causing airway obstructive disease and bronchiectasis. Chronic pulmonary involvement following exposure to mustard gas, is known as “mustard lung” is considered a form of COPD. Herbal medicines can be used to treat COPD and in the present study, we aim to provide an overview of key pre-clinical and clinical studies addressing herbal therapy of COPD and mustard lung, using the flora of Iran, published in the past decades.

Abstract 229 | PDF Downloads 176

References

1. Islam S, Sarkar NK, Mujahid AA, Bennoor KS, Hossain SS, Attar MM, Jahan R, Hossain MA, Chowdhury HA, Ali L. Association of Serum Vitamin D (25OHD) Level with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mymensingh Med J. 2019 Apr;28(2):441-448. PMID: 31086164. https://pubmed.ncbi.nlm.nih.gov/31086164/
2. Ko FW, Chan KP, Hui DS, Goddard JR, Shaw JG, Reid DW, Yang IA. Acute exacerbation of COPD. Respirology. 2016 Oct;21(7):1152-65. doi: 10.1111/resp.12780. Epub 2016 Mar 30. PMID: 27028990; PMCID: PMC7169165. doi: 10.1111/resp.12780
3. Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med. 2020 Sep;41(3):421-438. doi: 10.1016/j.ccm.2020.06.007. PMID: 32800196; PMCID: PMC7423341.
4. Thimmulappa, R.K., Chattopadhyay, I., Rajasekaran, S. (2020). Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. In: Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_5
5. Carrasco-Hernández L, Quintana-Gallego E, Calero C, Reinoso-Arija R, Ruiz-Duque B, López-Campos JL. Dysfunction in the cystic fibrosis transmembrane regulator in chronic obstructive pulmonary disease as a potential target for personalised medicine. Biomedicines. 2021 Oct 10;9(10):1437. https://doi.org/10.3390/biomedicines9101437
6. Ghobadi H, Abdollahi N, Madani H, Aslani MR. Effect of Crocin From Saffron (Crocus sativus L.) Supplementation on Oxidant/Antioxidant Markers, Exercise Capacity, and Pulmonary Function Tests in COPD Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Pharmacol. 2022 Apr 20;13:884710. doi: 10.3389/fphar.2022.884710. PMID: 35517806; PMCID: PMC9065288.
7. Chan KH, Tsoi YY, McCall M. The effectiveness of traditional Chinese medicine (TCM) as an adjunct treatment on stable COPD patients: a systematic review and Meta-Analysis. Evidence-based Complementary and Alternative Medicine. 2021 Jun 4;2021. https://doi.org/10.1155/2021/5550332
8. Moin A, Ghazanfari T, Davoudi SM, Emadi N, Panahi Y, Hassan ZM, Soroush MR, Khateri S, Amini R, Naghizadeh MM, Yaraee R. Long-term skin findings of sulfur mustard exposure on the civilians of Sardasht, Iran. Toxin Reviews. 2009 Feb 1;28(1):24-9 https://doi.org/10.1080/15569540802689311
9. Heidari A, Sheikhi MA, Rahmani H. Inflammatory status of Non-Smoker Sulphur Mustard exposed Patient with Cancer candidate for Coronary artery bypass grafting Surgery. Int J Pharm Res Allied Sci. 2016 Jan 1;5(3):196-8. https://ijpras.com/storage/models/article/imxkoTSyPTnVQbcg7OwmDoJjtkPJfBlJYJadzRpBJEjqWLgX7ViG8nJ5Tp80/inflammatory-status-of-non-smoker-sulphur-mustard-exposed-patient-with-cancer-candidate-for-corona.pdf
10. Pourfarzam S, Ghazanfari T, Merasizadeh J, Ghanei M, Azimi G, Araghizadeh H, Foroutan A, Shams J, Ghasemi H, Yaraee R, Shariat-Panahi S. Long-term pulmonary complications in sulfur mustard victims of Sardasht, Iran. Toxin Reviews. 2009 Feb 1;28(1):8-13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936843/
11. Weinberger B, Laskin JD, Sunil VR, Sinko PJ, Heck DE, Laskin DL. Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulmonary pharmacology & therapeutics. 2011 Feb 1;24(1):92-9 https://doi.org/10.1016/j.pupt.2010.09.004
12. Balali-Mood M, Afshari R, Zojaji R, Kahrom H, Kamrani M, Attaran D, Mousavi SR, Zare GA. Delayed toxic effects of sulfur mustard on respiratory tract of Iranian veterans. Human & experimental toxicology. 2011 Sep;30(9):1141-9 DOI:10.1177/0960327110389501
13. Shahriary A, Ghanei M, Rahmani H. The systemic nature of mustard lung: comparison with COPD patients. Interdisciplinary Toxicology. 2017 Nov 1;10(3):114-27 DOI: https://doi.org/10.1515/intox-2017-0018
14. Ozioma EO, Chinwe OA. Herbal medicines in African traditional medicine. Herbal medicine. 2019 Jan 30;10:191-214. DOI: 10.5772/intechopen.80348
15. Guan J, Chen W, Yang M, Wu E, Qian J, Zhan C. Regulation of in vivo delivery of nanomedicines by herbal medicines. Advanced drug delivery reviews. 2021 Jul 1;174:210-28. https://doi.org/10.1016/j.addr.2021.04.015
16. Hasen G, Hashim R. Current awareness of health professionals on the safety of herbal medicine and associated factors in the south west of ethiopia. Journal of Multidisciplinary Healthcare.2021;14:2001. https://www.tandfonline.com/doi/full/10.2147/JMDH.S321765
17. Wang X, Guo Y, Cai M, Qian ZM, Zhang S, Zhang Z, Yang Y, Vaughn MG, Aaron HE, Wu F, Zhang Y. Constituents of fine particulate matter and asthma in 6 low-and middle-income countries. Journal of Allergy and Clinical Immunology. 2022 Jul 1;150(1):214-22. https://doi.org/10.1016/j.jaci.2021.12.779
18. Alam S, Sarker MM, Afrin S, Richi FT, Zhao C, Zhou JR, Mohamed IN. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: update on clinical trials and mechanism of actions. Frontiers in pharmacology. 2021 May 28;12:671498.
19. Rashrash M, Schommer JC, Brown LM. Prevalence and Predictors of Herbal Medicine Use Among Adults in the United States. J Patient Exp. 2017 Sep;4(3):108-113. doi: 10.1177/2374373517706612. Epub 2017 Jun 5. PMID: 28959715; PMCID: PMC5593261. https://doi.org/10.1177/2374373517706612
20. Hawiger J, Zienkiewicz J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scandinavian journal of immunology. 2019 Dec;90(6):e12812. https://doi.org/10.1111/sji.12812
21. Yasir M, Goyal A, Bansal P, Sonthalia S. Corticosteroid adverse effects.2018. https://pubmed.ncbi.nlm.nih.gov/30285357/
22. Maroon JC, Bost JW, Maroon A. Natural anti-inflammatory agents for pain relief. Surg Neurol Int. 2010 Dec 13;1:80. doi: 10.4103/2152-7806.73804. PMID: 21206541; PMCID: PMC3011108 doi: 10.4103/2152-7806.73804.
23. Ajazuddin, Saraf S. Legal regulations of complementary and alternative medicines in different countries. Pharmacogn Rev. 2012 Jul;6(12):154-60. doi: 10.4103/0973-7847.99950. PMID: 23055642; PMCID: PMC3459458.
24. Hassan W, Noreen H, Rehman S, Gul S, Kamal MA, Kamdem JP, Zaman B, da Rocha JBT. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants. Curr Top Med Chem. 2017;17(12):1336-1370. doi: 10.2174/1568026617666170102125648. PMID: 28049396.
25. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613.
Epub 2012 Jan 13. PMID: 23268465; PMCID: PMC3488923.
26. Nazari‐Khanamiri F, Ghasemnejad‐Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. Journal of Food Biochemistry. 2021Nov;45(11):e13972. https://doi.org/10.1111/jfbc.13972
27. Hasanuzzaman M, Bhuyan MH, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 2020 Aug;9(8):681. https://doi.org/10.3390/antiox9080681
28. Hassan W, Noreen H, Rehman S, Gul S, Amjad Kamal M, Paul Kamdem J, Zaman B, BT da Rocha J. Oxidative stress and antioxidant potential of one hundred medicinal plants. Current topics in medicinal chemistry. 2017 May 1;17(12):1336-70. https://www.ingentaconnect.com/content/ben/ctmc/2017/00000017/00000012/art00005
29. Hikichi, M., Mizumura, K., Maruoka, S., & Gon, Y. (2019). Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. Journal of thoracic disease, 11(Suppl 17), S2129–S2140. https://doi.org/10.21037/jtd.2019.10.43
30. Hikichi, M., Mizumura, K., Maruoka, S., & Gon, Y. (2019). Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. Journal of thoracic disease, 11(Suppl 17), S2129–S2140. https://doi.org/10.21037/jtd.2019.10.43
31. Tanner L, Single AB. Animal Models Reflecting Chronic Obstructive Pulmonary Disease and Related Respiratory Disorders: Translating Pre-Clinical Data into Clinical Relevance. J Innate Immun. 2020;12(3):203-225. doi: 10.1159/000502489. Epub 2019 Sep 17. PMID: 31527372; PMCID: PMC7265725.
32. Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: a methodological review. Tob Induc Dis. 2017 May 2;15:25. doi: 10.1186/s12971-017-0130-2. PMID: 28469539; PMCID: PMC5414171.
33. Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M. Experimental animal models for COPD: a methodological review. Tob Induc Dis. 2017 May 2;15:25. doi: 10.1186/s12971-017-0130-2. PMID: 28469539; PMCID: PMC5414171.
34. Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. Drug Metabolism in Preclinical Drug Development: A Survey of the Discovery Process, Toxicology, and Computational Tools. Curr Drug Metab. 2017;18(6):556-565. doi: 10.2174/1389200218666170316093301. PMID: 28302026; PMCID: PMC5892202.
35. Jena GB, Chavan S. Implementation of Good Laboratory Practices (GLP) in basic scientific research: Translating the concept beyond regulatory compliance. Regulatory Toxicology and Pharmacology. 2017 Oct 1;89:20-5. https://doi.org/10.1016/j.yrtph.2017.07.010
36. Steinmetz KL, Spack EG. The basics of preclinical drug development for neurodegenerative disease indications. BMC neurology. 2009 Jun;9(1):1-3. https://doi.org/10.1186/1471-2377-9-S1-S2
37. Aban IB, George B. Statistical considerations for preclinical studies. Exp Neurol. 2015 Aug;270:82-7. doi: 10.1016/j.expneurol.2015.02.024. Epub 2015 Feb 26. PMID: 25725352; PMCID: PMC4466166. https://doi.org/10.1016/j.expneurol.2015.02.024
38. Gan J, Bolon B, Van Vleet T, Wood C. Alternative Models in Biomedical Research: In Silico, In Vitro, Ex Vivo, and Nontraditional In Vivo Approaches. InHaschek and Rousseaux's Handbook of Toxicologic Pathology 2022 Jan 1 (pp. 925-966). Academic Press. https://doi.org/10.1016/B978-0-12-821044-4.00005-4
39. Koul A, Bala S, Arora N. Aloe vera affects changes induced in pulmonary tissue of mice caused by cigarette smoke inhalation. Environmental toxicology. 2015 Sep;30(9):999-1013.
40. Atik N, Umbarawan Y, Nurdiawan W, Avriyanti E, Ruslami R. Aloe vera protect the rat's lung after cigarettes smoke inducement: a histological study. Journal of Advanced Pharmacy Education and Research. 2019;9(3):96-100. DOI : 10.1002/tox.21973
41. Atik N, Avriyanti E, Iwan JA, Indrati AR, Gunadi RW. The Effect of Aloe vera L. in Rat Lungs After Cigarette Smoke Induction. Majalah Kedokteran Bandung-Mkb-Bandung Medical Journal. 2012 Jan 1;44(3):159-64 DOI:10.15395/mkb.v44n3.151
42. Ks Z, Mkn N, Fi D, Dg E, Nd Ar, Nh R, F A, F M, S M, Ya My. Protective Effect Of Chlorella Vulgaris On Dna Damage, Oxidative Stress, And Lung Morphological Changes In Cigarette
Smoke-Exposed Rats. Asian J Pharm Clin Res [Internet]. 2018 Oct. 7 [cited 2022 Dec. 3];11(10):145-9. DOI:10.22159/ajpcr.2018.v11i10.26352
43. Kim SH, Hong JH, Yang WK, Geum JH, Kim HR, Choi SY, Kang YM, An HJ, Lee YC. Herbal Combinational Medication of Glycyrrhiza glabra, Agastache rugosa Containing Glycyrrhizic Acid, Tilianin Inhibits Neutrophilic Lung Inflammation by Affecting CXCL2, Interleukin-17/STAT3 Signal Pathways in a Murine Model of COPD. Nutrients. 2020 Mar 27;12(4):926. doi: 10.3390/nu12040926. PMID: 32230838; PMCID: PMC7231088.
44. Kao TC, Shyu MH, Yen GC. Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. Journal of agricultural and food chemistry. 2010 Aug 11;58(15):8623-9. https://doi.org/10.1021/jf101841r
45. Yang, Y., Huang, L., Tian, C. et al. Magnesium isoglycyrrhizinate inhibits airway inflammation in rats with chronic obstructive pulmonary disease. BMC Pulm Med 21, 371 (2021). https://doi.org/10.1186/s12890-021-01745-7.
46. Guan Y, Li FF, Hong L, Yan XF, Tan GL, He JS, Dong XW, Bao MJ, Xie QM. Protective effects of liquiritin apioside on cigarette smoke‐induced lung epithelial cell injury. Fundamental & clinical pharmacology. 2012 Aug;26(4):473-83 https://doi.org/10.1111/j.1472-8206.2011.00956.x
47. Manek RA, Sheth NR, Chavda JR, Vaghasiya JD, Modi KP, Patel DV. Liquorice exaggerates protective action of Solanum xanthocarpum against cigarette smoke induced pulmonary inflammation. Planta Medica. 2014 Jul;80(10):PP13. DOI: 10.1055/s-0034-1382708
48. Ren Q, Wang L, Zhao W, LU H, Xie Q, Zhang S. Licochalcone A protects against cigarette smoke-mediated acute lung injury in mice by suppressing ERK1/2/NF-κB pathways. Chinese Pharmacological Bulletin. 2016:643-51. https://pesquisa.bvsalud.org/portal/resource/pt/wpr-492380
49. Yu D, Liu X, Zhang G, Ming Z, Wang T. Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-κB signaling pathways. Frontiers in pharmacology. 2018 Sep 20;9:1001. doi: 10.3389/fphar.2018.01001
50. Srivastava A, Srivastava R. Ocimum inhibits airway inflammation in cigarette smoke inducedCOPD. Current Trends in Biotechnology & Pharmacy. 2020 Apr 2. https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09738916&AN=145465950&h=SYIkOpUqx%2b9YMipEXivuZoeTicOBN4x1qo%2b7Wbzam9ZU%2bSuzZeT12AUHCI2DLXf%2bKvk1kvHZnoN9YhHQ%2fojwWg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d09738916%26AN%3d145465950
51. Engelbertz J, Schwenk T, Kinzinger U, Schierstedt D, Verspohl EJ. Thyme extract, but not thymol, inhibits endothelin-induced contractions of isolated rat trachea. Planta medica. 2008 Oct;74(12):1436-40. doi: 10.1055/s-2008-1081349
52. Boskabady MH, Gholami Mhtaj L. Effect of the Zataria multiflora on systemic inflammation of experimental animals model of COPD. Biomed Res Int. 2014;2014:802189. doi: 10.1155/2014/802189. Epub 2014 Jun 11. PMID: 25013803; PMCID: PMC4071971.
53. Games E, Guerreiro M, Santana FR, Pinheiro NM, De Oliveira EA, Lopes FD, Olivo CR, Tibério IF, Martins MA, Lago JH, Prado CM. Structurally related monoterpenes p-cymene, carvacrol and thymol isolated from essential oil from leaves of Lippia sidoides Cham.(Verbenaceae) protect mice against elastase-induced emphysema. Molecules. 2016 Oct 20;21(10):1390. https://doi.org/10.3390/molecules21101390
54. Mahtaj LG, Feizpour A, Kianmehr M, Soukhtanloo M, Boskabady MH. The effect of carvacrol on systemic inflammation in guinea pigs model of COPD induced by cigarette smoke exposure. Pharmacological Reports. 2015 Jan;67(1):140-5. https://doi.org/10.1016/j.pharep.2014.08.017
55. Carvalho FO, Silva ÉR, Nunes PS, Felipe FA, Ramos KP, Ferreira LA, Lima VN, Shanmugam S, Oliveira AS, Guterres SS, Camargo EA. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation. Naunyn-Schmiedeberg's archives of pharmacology. 2020 Mar;393(3):445-55 https://doi.org/10.1007/s00210-019-01731-1
56. Boskabady MH, Gholami Mahtaj L. Lung inflammation changes and oxidative stress induced by cigarette smoke exposure in guinea pigs affected by Zataria multiflora and its
constituent, carvacrol. BMC complementary and alternative medicine. 2015 Dec;15(1):1-0. DOI: 10.1186/s12906-015-0574-y
57. Gholami Mahtaj L, Boskabady MH, Mohamadian Roshan N. The effect of Zataria multiflora and its constituent, carvacrol, on tracheal responsiveness and lung pathology in guinea pig model of COPD. Phytotherapy Research. 2015 May;29(5):730-6. https://doi.org/10.1002/ptr.5309
58. Boskabady MH, Gholami Mhtaj L. Effect of the Zataria multiflora on systemic inflammation of experimental animals model of COPD. BioMed research international. 2014 Oct;2014.. doi: 10.1155/2014/802189
59. Hossein BM, Nasim V, Sediqa A. The protective effect of Nigella sativa on lung injury of sulfur mustard-exposed Guinea pigs. Exp Lung Res. 2008 May;34(4):183-94. doi: 10.1080/01902140801935082. DOI: 10.1080/01902140801935082
60. Khazdair MR, Alavinezhad A, Boskabady MH. Carvacrol ameliorates haematological parameters, oxidant/antioxidant biomarkers and pulmonary function tests in patients with sulphur mustard‐induced lung disorders: a randomized double‐blind clinical trial. Journal of Clinical Pharmacy and Therapeutics. 2018 Oct;43(5):664-74. https://doi.org/10.1111/jcpt.12684
61. Boskabady MH, Vahedi N, Amery S, Khakzad MR. The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. Journal of ethnopharmacology. 2011 Sep 2;137(2):1028-34. https://doi.org/10.1016/j.jep.2011.07.030
62. Kacem R. Effects of Nigella (Nigella sativa L.) Seed Extract on Human Neutrophil Elastase Activity. InNuts and Seeds in Health and Disease Prevention 2011 Jan 1 (pp. 823-829). Academic Press. https://doi.org/10.1016/B978-0-12-375688-6.10097-0
63. Keyhanmanesh R, Nazemiyeh H, Mazouchian H, Asl MM, Shoar MK, Alipour MR, Boskabady MH. Nigella sativa pretreatment in guinea pigs exposed to cigarette smoke modulates in vitro tracheal responsiveness. Iranian Red Crescent Medical Journal. 2014 Jul;16(7). DOI: 10.5812/ircmj.10421
64. Barnawi J, Tran HB, Roscioli E, Hodge G, Jersmann H, Haberberger R, Hodge S. Pro-phagocytic effects of thymoquinone on cigarette smoke-exposed macrophages occur by modulation of the sphingosine-1-phosphate signalling system. COPD: Journal of ChronicObstructive Pulmonary Disease. 2016 Sep 2;13(5):653-61. https://doi.org/10.3109/15412555.2016.1153614
65. Dera AA, Al Fayi M, Otifi H, Alshyarba M, Alfhili M, Rajagopalan P. Thymoquinone (Tq) protects necroptosis induced by autophagy/mitophagy‐dependent oxidative stress in human bronchial epithelial cells exposed to cigarette smoke extract (CSE). Journal of Food Biochemistry. 2020 Sep;44(9):e13366. https://doi.org/10.1111/jfbc.13366
66. Panahi Y, Tavana S, Sahebkar A, Masoudi H, Madanchi N. Impact of Adjunctive Therapy with Chlorellav ulgaris Extract on Antioxidant Status, Pulmonary Function, and Clinical Symptoms of Patients with Obstructive Pulmonary Diseases. Sci Pharm. 2012 Jul-Sep;80(3):719-30. doi: 10.3797/scipharm.1202-06. Epub 2012 Jun 18. PMID: 23008817; PMCID: PMC3447618.
67. Yonsi EH, Mircheraghi SF, Mohammadzadeh H, Mojalli M. Effect Of Thymus Vulgaris Inhaling On Arterial Oxygen Saturation And Heart Rate In Patients With Acute Exacerbation Of Chronic Obstructive Pulmonary Disease. Indo American Journal Of Pharmaceutical Sciences. 2018 Jan 1;5(1):348-54. Https://Www.Academia.Edu/35728140/Effect_Of_Thymus_Vulgaris_Inhaling_On_Arterial_Oxygen_Saturation_And_Heart_Rate_In_Patients_With_Acute_Exacerbation_Of_Chronic_Obstructive_Pulmonary_Disease
68. Abdolahinia A, Naseri M, Eslaminejad A, Ghaffari F, Velayati A. Effect of Nepeta bracteata benth. on chronic obstructive pulmonary disease: a triple-blinded, randomized clinical trial. Iranian Red Crescent Medical Journal. 2018 Dec 1;20(12):e80112. doi: 10.5812/ircmj.80112
69. Hannan A, Sinha S, Sinha R, Kanchan G. Effect of Tinospora cordifolia in chronic bronchitis patients. Journal of Evolution of Medical and Dental Sciences. 2017 Mar 20;6(23):1850-8. https://go.gale.com/ps/i.do?id=GALE%7CA490820345&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=22784748&p=HRCA&sw=w
70. Ghorani V, Khazdair MR, Mirsadraee M, Rajabi O, Boskabady MH. The effect of two-month treatment with Zataria multiflora on inflammatory cytokines, pulmonary function testes and respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). J Ethnopharmacol. 2022 Jul 15;293:115265. doi: 10.1016/j.jep.2022.115265. Epub 2022 Apr 6. PMID: 35398241.
71. Khazdair MR, Alavinezhad A, Boskabady MH. Carvacrol ameliorates haematological parameters, oxidant/antioxidant biomarkers and pulmonary function tests in patients with sulphur mustard‐induced lung disorders: a randomized double‐blind clinical trial. Journal of Clinical Pharmacy and Therapeutics. 2018 Oct;43(5):664-74 https://doi.org/10.1111/jcpt.12684
72. Khazdair MR, Boskabady MH. The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial. Respiratory Medicine. 2019 Apr 1;150:21-9. DOI: 10.1016/j.rmed.2019.01.020
73. Khazdair MR, Boskabady MH. A double-blind, randomized, placebo-controlled clinical trial on the effect of carvacrol on serum cytokine levels and pulmonary function tests in sulfur mustard induced lung injury. Cytokine. 2019 Jan 1;113:311-8. DOI: 10.1016/j.cyto.2018.07.031
74. Ghorani V, Rajabi O, Mirsadraee M, Rezaeitalab F, Saadat S, Boskabady MH. A randomized, doubled‐blind clinical trial on the effect of Zataria multiflora on clinical symptoms, oxidative stress, and C‐reactive protein in COPD patients. The Journal of Clinical Pharmacology. 2020 Jul;60(7):867-78 DOI: 10.1002/jcph.1586
75. Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Effect of Zataria multiflora on serum cytokine levels and pulmonary function tests in sulfur mustard-induced lung disorders: A randomized double-blind clinical trial. Journal of ethnopharmacology. 2020 Feb 10;248:112325 https://doi.org/10.1016/j.jep.2019.112325
76. Khazdair MR, Rajabi O, Balali-Mood M, Beheshti F, Boskabady MH. The effect of Zataria multiflora on pulmonary function tests, hematological and oxidant/antioxidant parameters in sulfur mustard exposed veterans, a randomized doubled-blind clinical trial. Environmental Toxicology and Pharmacology. 2018 Mar 1;58:180-8. DOI: 10.1016/j.etap.2018.01.006
77. Pratama SB, Setyaningsih Y, Lestyanto D. The effect of ginger (Zingiber officinale) extract on the neutrophil level and CAT (COPD Assessment Test) scores in workers with COPD due to dust exposure. Qanun Medika-Medical Journal Faculty of Medicine Muhammadiyah Surabaya. 2022 Jan 12;6(1).
78. Brockwell C, Ampikaipakan S, Sexton DW, Price D, Freeman D, Thomas M, Ali M, Wilson AM. Adjunctive treatment with oral AKL1, a botanical nutraceutical, in chronic obstructive pulmonary disease. International journal of chronicobstructive pulmonary disease. 2014;9:715. http://dx.doi.org/10.30651/jqm.v6i1.9711
79. Al-Azzawi MA, AboZaid MM, Ibrahem RA, Sakr MA. Therapeutic effects of black seed oil supplementation on chronic obstructive pulmonary disease patients: A randomized controlled double blind clinical trial. Heliyon. 2020 Aug 1;6(8):e04711. DOI: 10.1016/j.heliyon.2020.e04711
80. Benalia A, Derbal K, Khalfaoui A, Bouchareb R, Panico A, Gisonni C, Crispino G, Pirozzi F, Pizzi A. Use of Aloe vera as an organic coagulant for improving drinking water quality. Water. 2021 Jul 24;13(15):2024. https://doi.org/10.3390/w13152024
81. Xia C, Van Le Q, Chinnathambi A, Salmen SH, Alharbi SA, Tola S. Role of ZnO and Fe2O3 nanoparticle on synthetic saline wastewater on growth, nutrient removal and lipid content of Chlorella vulgaris for sustainable production of biofuel. Fuel. 2021 Sep 15;300:120924. https://doi.org/10.1016/j.fuel.2021.120924
82. https://commons.wikimedia.org/wiki/File:Chlorella_vulgaris_NIES2170.jpg ; File used with permission under the Creative Commons Attribution-Share Alike 3.0 Unported license.
83. Taarji N, Bouhoute M, Melanie H, Hafidi A, Kobayashi I, Neves M, Tominaga K, Isoda H, Nakajima M. Stability characteristics of O/W emulsions prepared using purified glycyrrhizin or a non-purified glycyrrhizin-rich extract from liquorice root (Glycyrrhiza glabra). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021 Apr 5;614:126006. https://doi.org/10.1016/j.colsurfa.2020.126006
84. Anchana SR, Girija SA, Gunasekaran S, Priyadharsini VJ. Detection of csgA gene in carbapenem-resistant Acinetobacter baumannii strains and targeting with Ocimum sanctum biocompounds. Iranian Journal of Basic Medical Sciences. 2021 May;24(5):690. doi: 10.22038/IJBMS.2021.52852.11917
85. Darrag HM, Alhajhoj MR, Khalil HE. Bio-Insecticide of Thymus vulgaris and Ocimum basilicum Extract from Cell Suspensions and Their Inhibitory Effect against Serine, Cysteine, and Metalloproteinases of the Red Palm Weevil (Rhynchophorus ferrugineus). Insects. 2021 Apr 30;12(5):405. https://doi.org/10.3390/insects12050405
86. Alavinezhad A, Ghorani V, Rajabi O, Boskabady MH. Zataria multiflora extract influenced asthmatic patients by improving respiratory
symptoms, pulmonary function tests and lung inflammation. Journal of Ethnopharmacology. 2022 Mar 1;285:114888. https://doi.org/10.1016/j.jep.2021.114888
87. Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 2019 Apr 24;69(6):546–56. https://doi.org/10.1080/09064710.2019.1606930
88. Noor R, Yasmin H, Ilyas N, Nosheen A, Hassan MN, Mumtaz S, Khan N, Ahmad A, Ahmad P. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere. 2022 Apr 1;292:133201. https://doi.org/10.1016/j.chemosphere.2021.133201
89. https://commons.wikimedia.org/wiki/File:Zingiber_officinale_(Zingiberaceae).jpg ; File used with permission under the Creative Commons Attribution-Share Alike 4.0 International, 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
90. Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019–2021). Biomolecules. 2021 Dec 23;12(1):20. doi: 10.3390/biom12010020
91. Zhang M, Chen M, Hou Y, Fan C, Wei H, Shi L, Ma G, Zhang J. Inflammatory and Cytotoxic Activities of Abietane Terpenoids from Nepeta bracteata Benth. Molecules. 2021 Sep 15;26(18):5603.https://doi.org/10.3390/molecules26185603
92. Rana V, Thakur K, Sood R, Sharma V, Sharma TR. Genetic diversity analysis of Tinospora cordifolia germplasm collected from northwestern Himalayan region of India. Journal of genetics. 2012 Apr 1;91(1):99. DOI:10.1007/s12041-012-0137-7
93. Saha S, Ghosh S. Tinospora cordifolia: One plant, many roles. Ancient science of life. 2012 Apr;31(4):151. doi: 10.4103/0257-7941.107344
94. https://commons.wikimedia.org/wiki/File:Tinospora_cordifolia_fruits.jpg ; File used with permission under the Creative Commons Attribution-Share Alike 4.0 International license.