Generalized SIRD epidemiological model for Covid-19 in Tolima-Colombia
Main Article Content
Keywords
COVID19, SIRD
Abstract
This article presents an application of the generalized SIRD model from the fractional calculation approach with the Caputo derivative as a prediction tool. In addition, the infection, recovery and mortality rates are optimized, obtaining a better fit in the predictions to the real data. Finally, the graphs obtained using the Python programming language and their respective com- parative analysis are presented.
References
1. JE Jr Peacock, DM Herrington, SL Edelstein, AL Seals, ID Plumb, S Saydah, WH Lagarde, MS Runyon, PD Maguire, A Correa, WS Wein- traub, TF Wierzba, JW Sanders. Survey of Adherence with COVID-19 Prevention Behaviors During the 2020 Thanksgiving and Winter Hol- idays Among Members of the COVID-19 Community Research Part- nership.. J Community Health 47, 71-78 (2022).
2. Wang Y, Perlman S. COVID-19: Inflammatory Profile. Annu Rev Med. 2022 Jan 27;73:65-80. doi: 10.1146/annurev-med-042220-012417. Epub 2021 Aug 26. PMID: 34437814.
3. S Momtazmanesh, A Saghazadeh, JCA Becerra, K Aramesh, FJ Barba, F Bella, A Blakney, M Capaccioli, R Castagna, U Crisanti, T Davtyan, T Dorigo, J Ealy, M Farokhnia, G Grancini, M Gupta, A Harbi, W Krysztofiak, A Kulasinghe, CM Lam, A Leemans, B Lighthill, V Limongelli, P Lopreiato, L Luongo, CR Maboloc, R Malekzadeh, OC Gomes, M Milosevic, J Nouwen, D Ortega-S´anchez, J Pawelek, S Pra- manik, S Ramakrishna, O Renn, S Sanseviero, D Sauter, M Schreiber, FW Sellke, MA Shahbazi, N Shelkovaya, WH Slater, D Snoeck, S Szta- jer, LQ Uddin, L Veramendi-Espinoza, R Vinuesa, WC Willett, D Wu, K Z˙ yniewicz, N Rezaei. International Scientific Collaboration Is Needed to Bridge Science to Society: USERN2020 Consensus Statement.. SN Compr Clin Med 3, 1699-1703 (2021).
4. S Batabyal, A Batabyal. Public healthcare system capacity during COVID-19: A computational case study of SARS-CoV-2.. Health Sci Rep 4, e305 (2021).
5. G´omez Plata, A. R., & Capelas de Oliveira, E. (2019). Introducci´on al c´alculo fraccional. Editorial Neogranadina.
6. S Majee, S Adak, S Jana, M Mandal, TK Kar. Complex dynamics of a fractional-order SIR system in the context of COVID-19.. J Appl Math Comput, 1-24 (2022).
7. Swati, Nilam. Fractional order SIR epidemic model with Beddington- De Angelis incidence and Holling type II treatment rate for COVID-19.. J Appl Math Comput, 1-25 (2022).
8. FT Akyildiz, FS Alshammari. Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel.. Adv Differ Equ 2021, 319 (2021).
9. Y Chen, F Liu, Q Yu, T Li. Review of fractional epidemic models.. Appl Math Model 97, 281-307 (2021).
10. RT Alqahtani. Mathematical model of SIR epidemic system (COVID- 19) with fractional derivative: stability and numerical analysis.. Adv Differ Equ 2021, 2 (2021).
11. A Taghvaei, TT Georgiou, L Norton, A Tannenbaum. Fractional SIR Epidemiological Models.. medRxiv (2020)
12. F Nda¨ırou, I Area, JJ Nieto, CJ Silva, DFM Torres. Fractional model of COVID-19 applied to Galicia, Spain and Portugal.. Chaos Solitons Fractals 144, 110652 (2021).
13. H Mohammadi, S Rezapour, A Jajarmi. On the fractional SIRD math- ematical model and control for the transmission of COVID-19: The first and the second waves of the disease in Iran and Japan.. ISA Trans 124, 103-114 (2022).
14. KS Nisar, S Ahmad, A Ullah, K Shah, H Alrabaiah, M Arfan. Math- ematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data.. Results Phys 21, 103772 (2021).
15. H Jahanshahi, JM Munoz-Pacheco, S Bekiros, ND Alotaibi. A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19.. Chaos Solitons Fractals 143, 110632 (2021).
16. D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calcu- lus: Models And Numerical Methods Second Edition. World Scientific Publish- ing Company, ISBN 9789813140059, 2016.
2. Wang Y, Perlman S. COVID-19: Inflammatory Profile. Annu Rev Med. 2022 Jan 27;73:65-80. doi: 10.1146/annurev-med-042220-012417. Epub 2021 Aug 26. PMID: 34437814.
3. S Momtazmanesh, A Saghazadeh, JCA Becerra, K Aramesh, FJ Barba, F Bella, A Blakney, M Capaccioli, R Castagna, U Crisanti, T Davtyan, T Dorigo, J Ealy, M Farokhnia, G Grancini, M Gupta, A Harbi, W Krysztofiak, A Kulasinghe, CM Lam, A Leemans, B Lighthill, V Limongelli, P Lopreiato, L Luongo, CR Maboloc, R Malekzadeh, OC Gomes, M Milosevic, J Nouwen, D Ortega-S´anchez, J Pawelek, S Pra- manik, S Ramakrishna, O Renn, S Sanseviero, D Sauter, M Schreiber, FW Sellke, MA Shahbazi, N Shelkovaya, WH Slater, D Snoeck, S Szta- jer, LQ Uddin, L Veramendi-Espinoza, R Vinuesa, WC Willett, D Wu, K Z˙ yniewicz, N Rezaei. International Scientific Collaboration Is Needed to Bridge Science to Society: USERN2020 Consensus Statement.. SN Compr Clin Med 3, 1699-1703 (2021).
4. S Batabyal, A Batabyal. Public healthcare system capacity during COVID-19: A computational case study of SARS-CoV-2.. Health Sci Rep 4, e305 (2021).
5. G´omez Plata, A. R., & Capelas de Oliveira, E. (2019). Introducci´on al c´alculo fraccional. Editorial Neogranadina.
6. S Majee, S Adak, S Jana, M Mandal, TK Kar. Complex dynamics of a fractional-order SIR system in the context of COVID-19.. J Appl Math Comput, 1-24 (2022).
7. Swati, Nilam. Fractional order SIR epidemic model with Beddington- De Angelis incidence and Holling type II treatment rate for COVID-19.. J Appl Math Comput, 1-25 (2022).
8. FT Akyildiz, FS Alshammari. Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel.. Adv Differ Equ 2021, 319 (2021).
9. Y Chen, F Liu, Q Yu, T Li. Review of fractional epidemic models.. Appl Math Model 97, 281-307 (2021).
10. RT Alqahtani. Mathematical model of SIR epidemic system (COVID- 19) with fractional derivative: stability and numerical analysis.. Adv Differ Equ 2021, 2 (2021).
11. A Taghvaei, TT Georgiou, L Norton, A Tannenbaum. Fractional SIR Epidemiological Models.. medRxiv (2020)
12. F Nda¨ırou, I Area, JJ Nieto, CJ Silva, DFM Torres. Fractional model of COVID-19 applied to Galicia, Spain and Portugal.. Chaos Solitons Fractals 144, 110652 (2021).
13. H Mohammadi, S Rezapour, A Jajarmi. On the fractional SIRD math- ematical model and control for the transmission of COVID-19: The first and the second waves of the disease in Iran and Japan.. ISA Trans 124, 103-114 (2022).
14. KS Nisar, S Ahmad, A Ullah, K Shah, H Alrabaiah, M Arfan. Math- ematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data.. Results Phys 21, 103772 (2021).
15. H Jahanshahi, JM Munoz-Pacheco, S Bekiros, ND Alotaibi. A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19.. Chaos Solitons Fractals 143, 110632 (2021).
16. D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calcu- lus: Models And Numerical Methods Second Edition. World Scientific Publish- ing Company, ISBN 9789813140059, 2016.