Biosynthesis of selenium nanoparticles by Candida albicans and them antimicrobial effects
Main Article Content
Keywords
Nanoparticles, Candida, Biosynthesis, Antimicrobial
Abstract
This paper aims to testing the biological effectiveness of nanoparticles against types of pathogenic bacteria and fungi and opening promising horizons for the use of safe and effective alternatives with fewer side effects as alternatives to traditional antifungals or antibiotics to which pathogenic microorganisms have shown an ever-evolving resistance.
References
1. Ajose, D. J., Abolarinwa, T. O., Oluwarinde, B. O., Montso, P. K., Fayemi, O. E., Aremu, A. O., & Ateba, C. N. (2022). Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent
against Antimicrobial-Resistant Pathogens. Biomedicines, 10(10). https://doi.org/10.3390/biomedicines10102426
2. Akl, B. A., Nader, M. M., & El-Saadony, M. T. (2020). Biosynthesis of silver nanoparticles by Serratia marcescens ssp sakuensis and its antibacterial application against some pathogenic bacteria. Journal of Agricultural Chemistry and Biotechnology, 11(1), 1–8.
3. Al-Shemmary, A. J., Malallah, H. A., Al-Mashhadi, A. R., Jaber, A. H., & Shaker, Z. B. (2022). Biosynthesis Of Selenium Nanoparticles Using Probiotic Bacillus Clausii And Their Antibacterial Efficacy Against Multidrug-Resistant Bacteria (MDR). Journal of Pharmaceutical Negative Results, 13(7), 1011–1019. https://doi.org/10.47750/pnr.2022.13.S07.142
4. Ali, M. A., Ahmed, T., Wu, W., Hossain, A., Hafeez, R., Islam Masum, M. M., Wang, Y., An, Q., Sun, G., & Li, B. (2020). Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials, 10(6), 1146.
5. Aljabali, A. A. A., Obeid, M. A., Awadeen, S. A., Migdadi, E. M., Barhoum, A., Al Zoubi, M. S., Chellappan, D. K., Mishra, V., Charbe, N. B., & Dureja, H. (2022). Nature bioinspired and engineered nanomaterials. In Fundamentals of Bionanomaterials (pp. 31–58). Elsevier.
6. Bafghi, M. H., Darroudi, M., Zargar, M., Zarrinfar, H., & Nazari, R. (2021a). Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro and Nano Letters, 16(14), 656–669. https://doi.org/10.1049/mna2.12096
7. Bafghi, M. H., Darroudi, M., Zargar, M., Zarrinfar, H., & Nazari, R. (2021b). Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro and Nano Letters, 16(14), 656–669. https://doi.org/10.1049/mna2.12096
8. Bals, J., Loza, K., Epple, P., Kircher, T., & Epple, M. (2022). Automated and manual classification of metallic nanoparticles with respect to size and shape by analysis of scanning electron micrographs. Materialwissenschaft Und Werkstofftechnik, 53(3), 270–283.
9. Barhoum, A., García-Betancourt, M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M., Omran, M. M., S. Abdalla, M., & Bechelany, M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12(2), 177.
10. Birmann, P. T., Casaril, A. M., Abenante, L., Penteado, F., Brüning, C. A., Savegnago, L., & Lenardão, E. J. (2022). Neuropharmacology of Organoselenium Compounds in Mental Disor-
ders and Degenerative Diseases. Current Medicinal Chemistry.
11. Bisht, N., & Phalswal, P. (2022). Materials Advances Selenium nanoparticles : a review on synthesis and biomedical applications. 1415–1431. https://doi.org/10.1039/d1ma00639h
12. Bisla, A., Honparkhe, M., & Srivastava, N. (2022). A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia, e14589.
13. Boguszewicz, C., Boguszewicz, M., Iqbal, Z., Khan, S., Gaba, G. S., Suresh, A., & Pervaiz, B. (2021). The fourth industrial revolution-cyberspace mental wellbeing: Harnessing science & technology for humanity. Global Foundation for Cyber Studies and Research.
14. Chakraborty, S., Singh, A., & Roychoudhury, A. (2022). Biogenic nanoparticles and generation of abiotic stress-resilient plants: A new approach for sustainable agriculture. Plant Stress, 100117.
15. Chausali, N., Saxena, J., & Prasad, R. (2022). Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research, 7, 100257.
16. Chen, O., Mah, E., Dioum, E., Marwaha, A., Shanmugam, S., Malleshi, N., Sudha, V., Gayathri, R., Unnikrishnan, R., & Anjana, R. M. (2021). The role of oat nutrients in the immune system: a narrative review. Nutrients, 13(4), 1048.
17. Chhabria, S., & Desai, K. (2016). Selenium Nanoparticles and Their Applications. Encyclopedia of Nanoscience and Nanotechnology, 20(September), 1–32.
18. Chitti Kondal Rao, T., Rosaiah, G., Mangamuri, U. K., Sikharam, A. S., Devaraj, K., Kalagatur, N. K., & Kadirvelu, K. (2022). Biosynthesis of Selenium Nanoparticles from Annona muricata Fruit Aqueous Extract and Investigation of their Antioxidant and Antimicrobial potentials. Current Trends in Biotechnology and Pharmacy, 16(1), 101–107. https://doi.org/10.5530/ctbp.2022.1.10
19. Courty, M.-A., Allue, E., & Henry, A. (2020). Forming mechanisms of vitrified charcoals in archaeological firing-assemblages. Journal of Archaeological Science: Reports, 30, 102215.
20. Cremonini, E., Zonaro, E., Donini, M., Lampis, S., Boaretti, M., Dusi, S., Melotti, P., Lleo, M. M., & Vallini, G. (2016). Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial Biotechnology, 9(6), 758–771.
21. da Cunha, B. R., Fonseca, L. P., & Calado, C. R. C. (2019). Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 8(2). https://doi.org/10.3390/antibiotics8020045
22. de Pontes, J. T. C., Borges, A. B. T., Roque-Borda, C. A., & Pavan, F. R. (2022). Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics, 14(3), 1–20. https://doi.org/10.3390/pharmaceutics14030642
23. Dhanjal, S., & Cameotra, S. S. (2010). Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microbial Cell Factories, 9(1), 1–11.
24. Dolez, P. (2015). Nanoengineering: global approaches to health and safety issues. Elsevier.
25. Domb, A. J., Sharifzadeh, G., Nahum, V., & Hosseinkhani, H. (2021). Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021, 13, 1615. s Note: MDPI stays neutral with regard to jurisdictional claims in published ….
26. El-Sherbiny, I. M., & Sedki, M. (2019). Green synthesis of chitosan-silver/gold hybrid nanoparticles for biomedical applications. Methods in Molecular Biology, 2000(4), 79–84. https://doi.org/10.1007/978-1-4939-9516-5_7
27. Eleraky, N. E., Allam, A., Hassan, S. B., & Omar, M. M. (2020). Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics, 12(2), 142.
28. Ferreira, G., Blasina, F., Rey, M. R., Anesetti, G., Sapiro, R., Chavarría, L., Cardozo, R., Rey, G., Sobrevia, L., & Nicolson, G. L. (2022). Pathophysiological and molecular considerations of viral and bacterial infections during maternal-fetal and–neonatal interactions of SARS-CoV-2, Zika, and Mycoplasma infectious diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1868(1), 166285.
29. Ferro, C., Florindo, H. F., & Santos, H. A. (2021). Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Advanced Healthcare Materials, 10(16), 2100598.
30. Fouda, A., Al-Otaibi, W. A., Saber, T., AlMotwaa, S. M., Alshallash, K. S., Elhady, M., Badr, N. F., & Abdel-Rahman, M. A. (2022). Antimicrobial, Antiviral, and In-Vitro Cytotoxicity and Mosquitocidal Activities of Portulaca oleracea-Based Green Synthesis of Selenium Nanoparticles. Journal of Functional Biomaterials, 13(3), 157.
31. Fouda, A., Hassan, S. E.-D., Eid, A. M., Abdel‐Rahman, M. A., & Hamza, M. F. (2022). Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain,
Penicillium crustosum EP-1. Scientific Reports, 12(1), 1–16.
32. Ghelardi, E., Celandroni, F., Gueye, S. A., Salvetti, S., Senesi, S., Bulgheroni, A., & Mailland, F. (2014). Potential of ergosterol synthesis inhibitors To Cause Resistance or Cross-Resistance in trichophyton rubrum. Antimicrobial Agents and Chemotherapy, 58(5), 2825–2829. https://doi.org/10.1128/AAC.02382-13
33. Giurazza, R., Mazza, M. C., Andini, R., Sansone, P., Pace, M. C., & Durante-Mangoni, E. (2021). Emerging treatment options for multi-drug-resistant bacterial infections. Life, 11(6), 519.
34. Gnat, S., Łagowski, D., Nowakiewicz, A., & Dyląg, M. (2021). A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095–2113. https://doi.org/10.1111/jam.15032
35. Grasso, G., Zane, D., & Dragone, R. (2019). Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), 11.
36. Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10, 931.
37. Halwani, A. A. (2022). Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics, 14(1), 1–21. https://doi.org/10.3390/pharmaceutics14010106
38. Han, H. W., Patel, K. D., Kwak, J. H., Jun, S. K., Jang, T. S., Lee, S. H., Knowles, J. C., Kim, H. W., Lee, H. H., & Lee, J. H. (2021). Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules, 11(7). https://doi.org/10.3390/biom11071028
39. Hansson, K., & Brenthel, A. (2022). Imagining a post-antibiotic era: a cultural analysis of crisis and antibiotic resistance. Medical Humanities, 48(3), 381–388.
40. Hashem, A. H., Khalil, A. M. A., Reyad, A. M., & Salem, S. S. (2021). Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using Penicillium expansum ATTC 36200. Biological Trace Element Research, 199(10), 3998–4008. https://doi.org/10.1007/s12011-020-02506-z
41. Hashemi, S., Ganjkhanloo, M., Rezayazdi, K., Zali, A., Rafipour, R., & Amini, M. (2020). Study of selenium nanoparticles synthesis and investigation of its effect compared with other selenium sources on the blood parameters associated with the liver functional index of Holstein dairy cow. Journal of Veterinary Research, 75(1).
42. He, X., Deng, H., & Hwang, H. min. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1–21. https://doi.org/10.1016/j.jfda.2018.12.002
43. Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211.
44. Hossain, M. K., Khan, M. I., & El-Denglawey, A. (2021). A review on biomedical applications, prospects, and challenges of rare earth oxides. Applied Materials Today, 24, 101104.
45. Hossain, M. K., Pervez, M. F., Uddin, M. J., Tayyaba, S., Mia, M. N. H., Bashar, M. S., Jewel, M. K. H., Haque, M. A. S., Hakim, M. A., & Khan, M. A. (2018). Influence of natural dye adsorption on the structural, morphological and optical properties of TiO2 based photoanode of dye-sensitized solar cell. Mater. Sci, 36, 93–101.
46. Hou, J., Long, X., Wang, X., Li, L., Mao, D., Luo, Y., & Ren, H. (2023). Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. Journal of Hazardous Materials, 442, 130042.
47. Huang, T., Holden, J. A., Heath, D. E., O’Brien-Simpson, N. M., & O’Connor, A. J. (2019). Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 11(31), 14937–14951. https://doi.org/10.1039/c9nr04424h
48. Husain, S., Nandi, A., Simnani, F. Z., Saha, U., Ghosh, A., Sinha, A., Sahay, A., Samal, S. K., Panda, P. K., & Verma, S. K. (2023). Emerging Trends in Advanced Translational Applications of Silver Nanoparticles : A Progressing Dawn of Nanotechnology. 1–29.
49. Hussein, A. A., & Aldujaili, N. H. (2022). Biological preparation of Chitosan nanoparticles using Klebsiella pneumonia. AIP Conference Proceedings, 2386(1), 20002.
50. Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534–2571.
51. Khan, S., & Hossain, M. K. (2022). Classification and properties of nanoparticles. In Nanoparticle-Based Polymer Composites. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-824272-8.00009-9
52. Khanna, K., Kumar, P., Ohri, P., & Bhardwaj, R. (2022). Harnessing the role of selenium in soil–plant-microbe ecosystem: ecophysiological mechanisms and future prospects. Plant Growth Regulation, 1–21.
53. Klein, T. (2020). Wet Chemical Synthesis of Nano and Submicron Al Particles for the Preparation of Ni and Ru Aluminides.
54. Lashari, A., Hassan, S. M., & Mughal, S. S. (2022). Biosynthesis, Characterization and Biological Applications of BaO Nanoparticles using Linum usitatissimum. American Journal of Applied Scientific Research, 8(3), 58–68.
55. Lee, J., Jeong, C., Lee, T., Ryu, S., & Yang, Y. (2022). Direct observation of three-dimensional atomic structure of twinned metallic nanoparticles and their catalytic properties. Nano Letters, 22(2), 665–672.
56. León-Buitimea, A., Garza-Cervantes, J. A., Gallegos-Alvarado, D. Y., Osorio-Concepción, M., & Morones-Ramírez, J. R. (2021). Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, coccidioidomycosis, mucormycosis, and candidiasis. Pathogens, 10(10). https://doi.org/10.3390/pathogens10101303
57. Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Pérez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39–45.
58. Mal’tseva, V. N., Goltyaev, M. V, Turovsky, E. A., & Varlamova, E. G. (2022). Immunomodulatory and Anti-Inflammatory Properties of Selenium-Containing Agents: Their Role in the Regulation of Defense Mechanisms against COVID-19. International Journal of Molecular Sciences, 23(4), 2360.
59. Martins, R., & Kaczerewska, O. B. (2021). Green Nanotechnology: The Latest Innovations, Knowledge Gaps, and Future Perspectives. In Applied Sciences (Vol. 11, Issue 10, p. 4513). MDPI.
60. Matthews, T., & Sandy, J. (2022). Downloaded from https://academic.oup.com/mmy/article/60/Supplement_1/myac072S31a/6706196 by guest on 09 November 2022. 2022.
61. Mech, A., Gottardo, S., Amenta, V., Amodio, A., Belz, S., Bøwadt, S., Drbohlavová, J., Farcal, L., Jantunen, P., & Małyska, A. (2022). Safe-and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop. Regulatory Toxicology and Pharmacology, 128, 105093.
62. Mojadadi, A., Au, A., Salah, W., Witting, P., & Ahmad, G. (2021). Role for selenium in metabolic homeostasis and human reproduction. Nutrients, 13(9), 3256.
63. Morán, D., Gutiérrez, G., Mendoza, R., Rayner, M., Blanco-López, C., & Matos, M. (2023). Synthesis of controlled-size starch nanoparticles and superparamagnetic starch nanocomposites by microemulsion method. Carbohydrate Polymers, 299, 120223.
64. Mubeen, B., Ansar, A. N., Rasool, R., Ullah, I., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Nadeem, M. S., & Kazmi, I. (2021). Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics, 10(12). https://doi.org/10.3390/antibiotics10121473
65. Mushtaq, M., Hassan, S. M., & Mughal, S. S. (2022). Synthesis , Characterization and Biological Approach of Nano Oxides of Calcium by Piper nigrum. 10(4), 79–88. https://doi.org/10.11648/j.ajche.20221004.13
66. Nasrollahzadeh, M., Sajjadi, M., Sajadi, S. M., & Issaabadi, Z. (2019). Green nanotechnology. In Interface science and technology (Vol. 28, pp. 145–198). Elsevier.
67. Nayak, V., Singh, K. R. B., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878.
68. Noël de Tilly, A., & Tharmalingam, S. (2022). Review of Treatments for Oropharyngeal Fungal Infections in HIV/AIDS Patients. Microbiology Research, 13(2), 219–234. https://doi.org/10.3390/microbiolres13020019
69. Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 1–34.
70. Puvača, N., & Frutos, R. de L. (2021). Antimicrobial resistance in escherichia coli strains isolated from humans and pet animals. Antibiotics, 10(1), 1–19. https://doi.org/10.3390/antibiotics10010069
71. Rahman, M. T., Hoque, M. A., Rahman, G. T., Azmi, M. M., Gafur, M. A., Khan, R. A., & Hossain, M. K. (2019). Fe2O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on
mechanical properties. Radiation Effects and Defects in Solids, 174(5–6), 480–493.
72. Ramos, J. F., & Webster, T. J. (2012). Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. International Journal of Nanomedicine, 3907–3914.
73. Rasouli, M. (2019). Biosynthesis of Selenium Nanoparticles using yeast Nematospora coryli and examination of their anti-candida and anti-oxidant activities. IET Nanobiotechnology, 13(2), 214–218. https://doi.org/10.1049/iet-nbt.2018.5187
74. Rayhan, T. H., Yap, C. N., Yulisa, A., Popescu, I., Alvarez, J. A., & Kristanti, R. A. (2022). Engineered Nanoparticles for Wastewater Treatment System. Civil and Sustainable Urban Engineering, 2(2), 56–66.
75. Reddy, K. V., Sree, N. R. S., Kumar, P. S., & Ranjit, P. (2022). Microbial Enzymes in the Biosynthesis of Metal Nanoparticles. In Ecological Interplays in Microbial Enzymology (pp. 329–350). Springer.
76. Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 1–30. https://doi.org/10.3390/molecules21070836
77. Sahu, N., Das, J. K., & Behera, J. N. (2022). NiSe2 Nanoparticles Encapsulated in N-Doped Carbon Matrix Derived from a One-Dimensional Ni-MOF: An Efficient and Sustained Electrocatalyst for Hydrogen Evolution Reaction. Inorganic Chemistry, 61(6), 2835–2845.
78. Saini, N., & Ledwani, L. (2022). Potential Applications of Nanotechnology in Agriculture : Conceptions , Characteristics , Prospects , and Limitations. 147–161.
79. Salem, S. S., Badawy, M. S. E. M., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Life, 12(6). https://doi.org/10.3390/life12060893
80. Sami, A. (2019). Antifungal Effect of Gold Nanoparticles on Fungi Isolated From Onychomycosis Patients. Al-Azhar Journal of Pharmaceutical Sciences, 60(2), 26–42. https://doi.org/10.21608/ajps.2019.70234
81. Saravanan, A., Kumar, P. S., Hemavathy, R. V, Jeevanantham, S., Jawahar, M. J., Neshaanthini, J. P., & Saravanan, R. (2022). A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere, 135713. 82. Schneider, Y. K. (2021). Bacterial natural product drug discovery for new antibiotics: Strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics, 10(7). https://doi.org/10.3390/antibiotics10070842
83. Sharma, N., Saxena, T., Alam, S. N., Ray, B. C., Biswas, K., & Jha, S. K. (2022). Ceramic-Based Nanocomposites: A Perspective from Carbonaceous Nanofillers. Materials Today Communications, 103764.
84. Shu, W.-S., & Huang, L.-N. (2022). Microbial diversity in extreme environments. Nature Reviews Microbiology, 20(4), 219–235.
85. Singh, N., Saha, P., Rajkumar, K., & Abraham, J. (2014). Biosynthesis of silver and selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of antimicrobial activity. Der Pharmacia Lettre, 6(1), 175–181.
86. Singh, V. V. (2022). Green nanotechnology for environmental remediation. In Sustainable Nanotechnology for Environmental Remediation (pp. 31–61). Elsevier.
87. Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38, 1723–1730.
88. Sun, L., Wang, J., Li, L., & Xu, Z. P. (2022). Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Advanced Drug Delivery Reviews, 180, 114031.
89. Thipe, V. C., Karikachery, A. R., Cakilkaya, P., Farooq, U., Genedy, H. H., Kaeokhamloed, N., Phan, D.-H., Rezwan, R., Tezcan, G., & Roger, E. (2022). Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. Journal of Drug Delivery Science and Technology, 103256.
90. Torres, S. K., Campos, V. L., León, C. G., Rodríguez-Llamazares, S. M., Rojas, S. M., González, M., Smith, C., & Mondaca, M. A. (2012). Biosynthesis of selenium nanoparticles by pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research, 14(11). https://doi.org/10.1007/s11051-012-1236-3
91. Ullah, A., Yin, X., Wang, F., Xu, B., Mirani, Z. A., Xu, B., Chan, M. W. H., Ali, A., Usman, M., Ali, N., & Naveed, M. (2021). Biosynthesis of selenium nanoparticles (Via bacillus subtilis bsn313), and their isolation, characterization, and bioactivities. Molecules, 26(18). https://doi.org/10.3390/molecules26185559
92. Vargas, K. M., & Shon, Y.-S. (2019). Hybrid lipid–nanoparticle complexes for biomedical applications. Journal of Materials Chemistry B, 7(5), 695–708.
93. Vijayakumar, S., Chen, J., Divya, M., Durán-Lara, E. F., Prasannakumar, M., & Vaseeharan, B. (2022). A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. Journal of Inorganic and Organometallic Polymers and Materials, 1–16.
94. Vyas, J., Rana, S., & Jay Vyas, C. (2018). Synthesis of selenium nanoparticles using Allium sativum extract and analysis of their antimicrobial property against gram positive bacteria. ~ 262 ~ The Pharma Innovation Journal, 7(9), 262–266. www.thepharmajournal.com
95. Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 100445.
96. Zare, B., Babaie, S., Setayesh, N., & Shahverdi, A. R. (2013). Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomedicine Journal, 1(1), 13–19.
97. Zhang, Y., Sun, Y., Li, M., Luo, S., Dorus, B., Lu, M., & Sun, Q. (2022). The application of a three-dimensional flower-like heterojunction containing zinc oxide nanoparticles and modified carbon nitride for enhanced photodegradation. Journal of Alloys and Compounds, 890, 161744.
98. Zhao, G., Wu, X., Chen, P., Zhang, L., Yang, C. S., & Zhang, J. (2018). Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radical Biology and Medicine, 126, 55–66.
against Antimicrobial-Resistant Pathogens. Biomedicines, 10(10). https://doi.org/10.3390/biomedicines10102426
2. Akl, B. A., Nader, M. M., & El-Saadony, M. T. (2020). Biosynthesis of silver nanoparticles by Serratia marcescens ssp sakuensis and its antibacterial application against some pathogenic bacteria. Journal of Agricultural Chemistry and Biotechnology, 11(1), 1–8.
3. Al-Shemmary, A. J., Malallah, H. A., Al-Mashhadi, A. R., Jaber, A. H., & Shaker, Z. B. (2022). Biosynthesis Of Selenium Nanoparticles Using Probiotic Bacillus Clausii And Their Antibacterial Efficacy Against Multidrug-Resistant Bacteria (MDR). Journal of Pharmaceutical Negative Results, 13(7), 1011–1019. https://doi.org/10.47750/pnr.2022.13.S07.142
4. Ali, M. A., Ahmed, T., Wu, W., Hossain, A., Hafeez, R., Islam Masum, M. M., Wang, Y., An, Q., Sun, G., & Li, B. (2020). Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials, 10(6), 1146.
5. Aljabali, A. A. A., Obeid, M. A., Awadeen, S. A., Migdadi, E. M., Barhoum, A., Al Zoubi, M. S., Chellappan, D. K., Mishra, V., Charbe, N. B., & Dureja, H. (2022). Nature bioinspired and engineered nanomaterials. In Fundamentals of Bionanomaterials (pp. 31–58). Elsevier.
6. Bafghi, M. H., Darroudi, M., Zargar, M., Zarrinfar, H., & Nazari, R. (2021a). Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro and Nano Letters, 16(14), 656–669. https://doi.org/10.1049/mna2.12096
7. Bafghi, M. H., Darroudi, M., Zargar, M., Zarrinfar, H., & Nazari, R. (2021b). Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro and Nano Letters, 16(14), 656–669. https://doi.org/10.1049/mna2.12096
8. Bals, J., Loza, K., Epple, P., Kircher, T., & Epple, M. (2022). Automated and manual classification of metallic nanoparticles with respect to size and shape by analysis of scanning electron micrographs. Materialwissenschaft Und Werkstofftechnik, 53(3), 270–283.
9. Barhoum, A., García-Betancourt, M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M., Omran, M. M., S. Abdalla, M., & Bechelany, M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12(2), 177.
10. Birmann, P. T., Casaril, A. M., Abenante, L., Penteado, F., Brüning, C. A., Savegnago, L., & Lenardão, E. J. (2022). Neuropharmacology of Organoselenium Compounds in Mental Disor-
ders and Degenerative Diseases. Current Medicinal Chemistry.
11. Bisht, N., & Phalswal, P. (2022). Materials Advances Selenium nanoparticles : a review on synthesis and biomedical applications. 1415–1431. https://doi.org/10.1039/d1ma00639h
12. Bisla, A., Honparkhe, M., & Srivastava, N. (2022). A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia, e14589.
13. Boguszewicz, C., Boguszewicz, M., Iqbal, Z., Khan, S., Gaba, G. S., Suresh, A., & Pervaiz, B. (2021). The fourth industrial revolution-cyberspace mental wellbeing: Harnessing science & technology for humanity. Global Foundation for Cyber Studies and Research.
14. Chakraborty, S., Singh, A., & Roychoudhury, A. (2022). Biogenic nanoparticles and generation of abiotic stress-resilient plants: A new approach for sustainable agriculture. Plant Stress, 100117.
15. Chausali, N., Saxena, J., & Prasad, R. (2022). Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research, 7, 100257.
16. Chen, O., Mah, E., Dioum, E., Marwaha, A., Shanmugam, S., Malleshi, N., Sudha, V., Gayathri, R., Unnikrishnan, R., & Anjana, R. M. (2021). The role of oat nutrients in the immune system: a narrative review. Nutrients, 13(4), 1048.
17. Chhabria, S., & Desai, K. (2016). Selenium Nanoparticles and Their Applications. Encyclopedia of Nanoscience and Nanotechnology, 20(September), 1–32.
18. Chitti Kondal Rao, T., Rosaiah, G., Mangamuri, U. K., Sikharam, A. S., Devaraj, K., Kalagatur, N. K., & Kadirvelu, K. (2022). Biosynthesis of Selenium Nanoparticles from Annona muricata Fruit Aqueous Extract and Investigation of their Antioxidant and Antimicrobial potentials. Current Trends in Biotechnology and Pharmacy, 16(1), 101–107. https://doi.org/10.5530/ctbp.2022.1.10
19. Courty, M.-A., Allue, E., & Henry, A. (2020). Forming mechanisms of vitrified charcoals in archaeological firing-assemblages. Journal of Archaeological Science: Reports, 30, 102215.
20. Cremonini, E., Zonaro, E., Donini, M., Lampis, S., Boaretti, M., Dusi, S., Melotti, P., Lleo, M. M., & Vallini, G. (2016). Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial Biotechnology, 9(6), 758–771.
21. da Cunha, B. R., Fonseca, L. P., & Calado, C. R. C. (2019). Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 8(2). https://doi.org/10.3390/antibiotics8020045
22. de Pontes, J. T. C., Borges, A. B. T., Roque-Borda, C. A., & Pavan, F. R. (2022). Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics, 14(3), 1–20. https://doi.org/10.3390/pharmaceutics14030642
23. Dhanjal, S., & Cameotra, S. S. (2010). Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microbial Cell Factories, 9(1), 1–11.
24. Dolez, P. (2015). Nanoengineering: global approaches to health and safety issues. Elsevier.
25. Domb, A. J., Sharifzadeh, G., Nahum, V., & Hosseinkhani, H. (2021). Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021, 13, 1615. s Note: MDPI stays neutral with regard to jurisdictional claims in published ….
26. El-Sherbiny, I. M., & Sedki, M. (2019). Green synthesis of chitosan-silver/gold hybrid nanoparticles for biomedical applications. Methods in Molecular Biology, 2000(4), 79–84. https://doi.org/10.1007/978-1-4939-9516-5_7
27. Eleraky, N. E., Allam, A., Hassan, S. B., & Omar, M. M. (2020). Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics, 12(2), 142.
28. Ferreira, G., Blasina, F., Rey, M. R., Anesetti, G., Sapiro, R., Chavarría, L., Cardozo, R., Rey, G., Sobrevia, L., & Nicolson, G. L. (2022). Pathophysiological and molecular considerations of viral and bacterial infections during maternal-fetal and–neonatal interactions of SARS-CoV-2, Zika, and Mycoplasma infectious diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1868(1), 166285.
29. Ferro, C., Florindo, H. F., & Santos, H. A. (2021). Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Advanced Healthcare Materials, 10(16), 2100598.
30. Fouda, A., Al-Otaibi, W. A., Saber, T., AlMotwaa, S. M., Alshallash, K. S., Elhady, M., Badr, N. F., & Abdel-Rahman, M. A. (2022). Antimicrobial, Antiviral, and In-Vitro Cytotoxicity and Mosquitocidal Activities of Portulaca oleracea-Based Green Synthesis of Selenium Nanoparticles. Journal of Functional Biomaterials, 13(3), 157.
31. Fouda, A., Hassan, S. E.-D., Eid, A. M., Abdel‐Rahman, M. A., & Hamza, M. F. (2022). Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain,
Penicillium crustosum EP-1. Scientific Reports, 12(1), 1–16.
32. Ghelardi, E., Celandroni, F., Gueye, S. A., Salvetti, S., Senesi, S., Bulgheroni, A., & Mailland, F. (2014). Potential of ergosterol synthesis inhibitors To Cause Resistance or Cross-Resistance in trichophyton rubrum. Antimicrobial Agents and Chemotherapy, 58(5), 2825–2829. https://doi.org/10.1128/AAC.02382-13
33. Giurazza, R., Mazza, M. C., Andini, R., Sansone, P., Pace, M. C., & Durante-Mangoni, E. (2021). Emerging treatment options for multi-drug-resistant bacterial infections. Life, 11(6), 519.
34. Gnat, S., Łagowski, D., Nowakiewicz, A., & Dyląg, M. (2021). A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. Journal of Applied Microbiology, 131(5), 2095–2113. https://doi.org/10.1111/jam.15032
35. Grasso, G., Zane, D., & Dragone, R. (2019). Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), 11.
36. Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10, 931.
37. Halwani, A. A. (2022). Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics, 14(1), 1–21. https://doi.org/10.3390/pharmaceutics14010106
38. Han, H. W., Patel, K. D., Kwak, J. H., Jun, S. K., Jang, T. S., Lee, S. H., Knowles, J. C., Kim, H. W., Lee, H. H., & Lee, J. H. (2021). Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules, 11(7). https://doi.org/10.3390/biom11071028
39. Hansson, K., & Brenthel, A. (2022). Imagining a post-antibiotic era: a cultural analysis of crisis and antibiotic resistance. Medical Humanities, 48(3), 381–388.
40. Hashem, A. H., Khalil, A. M. A., Reyad, A. M., & Salem, S. S. (2021). Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using Penicillium expansum ATTC 36200. Biological Trace Element Research, 199(10), 3998–4008. https://doi.org/10.1007/s12011-020-02506-z
41. Hashemi, S., Ganjkhanloo, M., Rezayazdi, K., Zali, A., Rafipour, R., & Amini, M. (2020). Study of selenium nanoparticles synthesis and investigation of its effect compared with other selenium sources on the blood parameters associated with the liver functional index of Holstein dairy cow. Journal of Veterinary Research, 75(1).
42. He, X., Deng, H., & Hwang, H. min. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1–21. https://doi.org/10.1016/j.jfda.2018.12.002
43. Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211.
44. Hossain, M. K., Khan, M. I., & El-Denglawey, A. (2021). A review on biomedical applications, prospects, and challenges of rare earth oxides. Applied Materials Today, 24, 101104.
45. Hossain, M. K., Pervez, M. F., Uddin, M. J., Tayyaba, S., Mia, M. N. H., Bashar, M. S., Jewel, M. K. H., Haque, M. A. S., Hakim, M. A., & Khan, M. A. (2018). Influence of natural dye adsorption on the structural, morphological and optical properties of TiO2 based photoanode of dye-sensitized solar cell. Mater. Sci, 36, 93–101.
46. Hou, J., Long, X., Wang, X., Li, L., Mao, D., Luo, Y., & Ren, H. (2023). Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. Journal of Hazardous Materials, 442, 130042.
47. Huang, T., Holden, J. A., Heath, D. E., O’Brien-Simpson, N. M., & O’Connor, A. J. (2019). Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 11(31), 14937–14951. https://doi.org/10.1039/c9nr04424h
48. Husain, S., Nandi, A., Simnani, F. Z., Saha, U., Ghosh, A., Sinha, A., Sahay, A., Samal, S. K., Panda, P. K., & Verma, S. K. (2023). Emerging Trends in Advanced Translational Applications of Silver Nanoparticles : A Progressing Dawn of Nanotechnology. 1–29.
49. Hussein, A. A., & Aldujaili, N. H. (2022). Biological preparation of Chitosan nanoparticles using Klebsiella pneumonia. AIP Conference Proceedings, 2386(1), 20002.
50. Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534–2571.
51. Khan, S., & Hossain, M. K. (2022). Classification and properties of nanoparticles. In Nanoparticle-Based Polymer Composites. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-824272-8.00009-9
52. Khanna, K., Kumar, P., Ohri, P., & Bhardwaj, R. (2022). Harnessing the role of selenium in soil–plant-microbe ecosystem: ecophysiological mechanisms and future prospects. Plant Growth Regulation, 1–21.
53. Klein, T. (2020). Wet Chemical Synthesis of Nano and Submicron Al Particles for the Preparation of Ni and Ru Aluminides.
54. Lashari, A., Hassan, S. M., & Mughal, S. S. (2022). Biosynthesis, Characterization and Biological Applications of BaO Nanoparticles using Linum usitatissimum. American Journal of Applied Scientific Research, 8(3), 58–68.
55. Lee, J., Jeong, C., Lee, T., Ryu, S., & Yang, Y. (2022). Direct observation of three-dimensional atomic structure of twinned metallic nanoparticles and their catalytic properties. Nano Letters, 22(2), 665–672.
56. León-Buitimea, A., Garza-Cervantes, J. A., Gallegos-Alvarado, D. Y., Osorio-Concepción, M., & Morones-Ramírez, J. R. (2021). Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, coccidioidomycosis, mucormycosis, and candidiasis. Pathogens, 10(10). https://doi.org/10.3390/pathogens10101303
57. Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Pérez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39–45.
58. Mal’tseva, V. N., Goltyaev, M. V, Turovsky, E. A., & Varlamova, E. G. (2022). Immunomodulatory and Anti-Inflammatory Properties of Selenium-Containing Agents: Their Role in the Regulation of Defense Mechanisms against COVID-19. International Journal of Molecular Sciences, 23(4), 2360.
59. Martins, R., & Kaczerewska, O. B. (2021). Green Nanotechnology: The Latest Innovations, Knowledge Gaps, and Future Perspectives. In Applied Sciences (Vol. 11, Issue 10, p. 4513). MDPI.
60. Matthews, T., & Sandy, J. (2022). Downloaded from https://academic.oup.com/mmy/article/60/Supplement_1/myac072S31a/6706196 by guest on 09 November 2022. 2022.
61. Mech, A., Gottardo, S., Amenta, V., Amodio, A., Belz, S., Bøwadt, S., Drbohlavová, J., Farcal, L., Jantunen, P., & Małyska, A. (2022). Safe-and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop. Regulatory Toxicology and Pharmacology, 128, 105093.
62. Mojadadi, A., Au, A., Salah, W., Witting, P., & Ahmad, G. (2021). Role for selenium in metabolic homeostasis and human reproduction. Nutrients, 13(9), 3256.
63. Morán, D., Gutiérrez, G., Mendoza, R., Rayner, M., Blanco-López, C., & Matos, M. (2023). Synthesis of controlled-size starch nanoparticles and superparamagnetic starch nanocomposites by microemulsion method. Carbohydrate Polymers, 299, 120223.
64. Mubeen, B., Ansar, A. N., Rasool, R., Ullah, I., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Nadeem, M. S., & Kazmi, I. (2021). Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics, 10(12). https://doi.org/10.3390/antibiotics10121473
65. Mushtaq, M., Hassan, S. M., & Mughal, S. S. (2022). Synthesis , Characterization and Biological Approach of Nano Oxides of Calcium by Piper nigrum. 10(4), 79–88. https://doi.org/10.11648/j.ajche.20221004.13
66. Nasrollahzadeh, M., Sajjadi, M., Sajadi, S. M., & Issaabadi, Z. (2019). Green nanotechnology. In Interface science and technology (Vol. 28, pp. 145–198). Elsevier.
67. Nayak, V., Singh, K. R. B., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878.
68. Noël de Tilly, A., & Tharmalingam, S. (2022). Review of Treatments for Oropharyngeal Fungal Infections in HIV/AIDS Patients. Microbiology Research, 13(2), 219–234. https://doi.org/10.3390/microbiolres13020019
69. Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 1–34.
70. Puvača, N., & Frutos, R. de L. (2021). Antimicrobial resistance in escherichia coli strains isolated from humans and pet animals. Antibiotics, 10(1), 1–19. https://doi.org/10.3390/antibiotics10010069
71. Rahman, M. T., Hoque, M. A., Rahman, G. T., Azmi, M. M., Gafur, M. A., Khan, R. A., & Hossain, M. K. (2019). Fe2O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on
mechanical properties. Radiation Effects and Defects in Solids, 174(5–6), 480–493.
72. Ramos, J. F., & Webster, T. J. (2012). Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. International Journal of Nanomedicine, 3907–3914.
73. Rasouli, M. (2019). Biosynthesis of Selenium Nanoparticles using yeast Nematospora coryli and examination of their anti-candida and anti-oxidant activities. IET Nanobiotechnology, 13(2), 214–218. https://doi.org/10.1049/iet-nbt.2018.5187
74. Rayhan, T. H., Yap, C. N., Yulisa, A., Popescu, I., Alvarez, J. A., & Kristanti, R. A. (2022). Engineered Nanoparticles for Wastewater Treatment System. Civil and Sustainable Urban Engineering, 2(2), 56–66.
75. Reddy, K. V., Sree, N. R. S., Kumar, P. S., & Ranjit, P. (2022). Microbial Enzymes in the Biosynthesis of Metal Nanoparticles. In Ecological Interplays in Microbial Enzymology (pp. 329–350). Springer.
76. Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 1–30. https://doi.org/10.3390/molecules21070836
77. Sahu, N., Das, J. K., & Behera, J. N. (2022). NiSe2 Nanoparticles Encapsulated in N-Doped Carbon Matrix Derived from a One-Dimensional Ni-MOF: An Efficient and Sustained Electrocatalyst for Hydrogen Evolution Reaction. Inorganic Chemistry, 61(6), 2835–2845.
78. Saini, N., & Ledwani, L. (2022). Potential Applications of Nanotechnology in Agriculture : Conceptions , Characteristics , Prospects , and Limitations. 147–161.
79. Salem, S. S., Badawy, M. S. E. M., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Life, 12(6). https://doi.org/10.3390/life12060893
80. Sami, A. (2019). Antifungal Effect of Gold Nanoparticles on Fungi Isolated From Onychomycosis Patients. Al-Azhar Journal of Pharmaceutical Sciences, 60(2), 26–42. https://doi.org/10.21608/ajps.2019.70234
81. Saravanan, A., Kumar, P. S., Hemavathy, R. V, Jeevanantham, S., Jawahar, M. J., Neshaanthini, J. P., & Saravanan, R. (2022). A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere, 135713. 82. Schneider, Y. K. (2021). Bacterial natural product drug discovery for new antibiotics: Strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics, 10(7). https://doi.org/10.3390/antibiotics10070842
83. Sharma, N., Saxena, T., Alam, S. N., Ray, B. C., Biswas, K., & Jha, S. K. (2022). Ceramic-Based Nanocomposites: A Perspective from Carbonaceous Nanofillers. Materials Today Communications, 103764.
84. Shu, W.-S., & Huang, L.-N. (2022). Microbial diversity in extreme environments. Nature Reviews Microbiology, 20(4), 219–235.
85. Singh, N., Saha, P., Rajkumar, K., & Abraham, J. (2014). Biosynthesis of silver and selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of antimicrobial activity. Der Pharmacia Lettre, 6(1), 175–181.
86. Singh, V. V. (2022). Green nanotechnology for environmental remediation. In Sustainable Nanotechnology for Environmental Remediation (pp. 31–61). Elsevier.
87. Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38, 1723–1730.
88. Sun, L., Wang, J., Li, L., & Xu, Z. P. (2022). Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Advanced Drug Delivery Reviews, 180, 114031.
89. Thipe, V. C., Karikachery, A. R., Cakilkaya, P., Farooq, U., Genedy, H. H., Kaeokhamloed, N., Phan, D.-H., Rezwan, R., Tezcan, G., & Roger, E. (2022). Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. Journal of Drug Delivery Science and Technology, 103256.
90. Torres, S. K., Campos, V. L., León, C. G., Rodríguez-Llamazares, S. M., Rojas, S. M., González, M., Smith, C., & Mondaca, M. A. (2012). Biosynthesis of selenium nanoparticles by pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research, 14(11). https://doi.org/10.1007/s11051-012-1236-3
91. Ullah, A., Yin, X., Wang, F., Xu, B., Mirani, Z. A., Xu, B., Chan, M. W. H., Ali, A., Usman, M., Ali, N., & Naveed, M. (2021). Biosynthesis of selenium nanoparticles (Via bacillus subtilis bsn313), and their isolation, characterization, and bioactivities. Molecules, 26(18). https://doi.org/10.3390/molecules26185559
92. Vargas, K. M., & Shon, Y.-S. (2019). Hybrid lipid–nanoparticle complexes for biomedical applications. Journal of Materials Chemistry B, 7(5), 695–708.
93. Vijayakumar, S., Chen, J., Divya, M., Durán-Lara, E. F., Prasannakumar, M., & Vaseeharan, B. (2022). A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. Journal of Inorganic and Organometallic Polymers and Materials, 1–16.
94. Vyas, J., Rana, S., & Jay Vyas, C. (2018). Synthesis of selenium nanoparticles using Allium sativum extract and analysis of their antimicrobial property against gram positive bacteria. ~ 262 ~ The Pharma Innovation Journal, 7(9), 262–266. www.thepharmajournal.com
95. Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 100445.
96. Zare, B., Babaie, S., Setayesh, N., & Shahverdi, A. R. (2013). Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomedicine Journal, 1(1), 13–19.
97. Zhang, Y., Sun, Y., Li, M., Luo, S., Dorus, B., Lu, M., & Sun, Q. (2022). The application of a three-dimensional flower-like heterojunction containing zinc oxide nanoparticles and modified carbon nitride for enhanced photodegradation. Journal of Alloys and Compounds, 890, 161744.
98. Zhao, G., Wu, X., Chen, P., Zhang, L., Yang, C. S., & Zhang, J. (2018). Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radical Biology and Medicine, 126, 55–66.