Improvement Of Quercetin-Loaded Eudrgit L- 100 Nanoparticles Using Factorial Desgin Methadology
Main Article Content
Keywords
nanoparticle, quercetin, experimental design, Box-Behnken, optimization
Abstract
Background: Quercetin is a flavonoid with strong antioxidant properties with a wide range of pharmacological actions. The aim of this study was to see how formulation parameters affected the physicochemical characteristics of quercetin-loaded polymeric nanoparticles so that the formulation might be improved.
Materials and procedures: Nanoprecipitation was used to create the nanoparticles. This study used a Box-Behnken design with three levels and three factors using Eudragit L-100, Pluronic F-68 concentration, and volume of organic solvent as independent variables. Particle size, polydispersity index, and zeta potential as response.
Results: The amount of polymer is the most important factor influencing quercetin-nanoparticle characteristics. Increasing amount of Eudragit L-100 led to an increase in particle size and,. Polydispersity index .As opposed to that, it exhibited a slightly positive influence on zeta potential.
The pluronic concentration had positive effect on particle size and polydispersity index. However, pluronic concentration had an important negative effect on the zeta potential. .The volume of organic solvent had an negative effect on the particle size and zeta potential but positive effect on PDI. Based on An improved formulation was created based on the results, and the experimental values were close to those expected.
Conclusions: Overall, the amount of polymer EDRAGIT L-100 used had the greatest impact on particle size, while the pluronic F-68 concentration had the greatest impact on PDI and zeta potential
References
2. Ghasemian E, Vatanara A, Najafabadi AR, Rouini MR, Gilani K, Darabi M. Preparation, characterization and optimization of sildenafil citate loaded PLGA nanoparticles by statistical factorial design. Daru. 2013;19;21(1):68.
3. Sengel Türk CT, Sezgin Bayindir Z, Badilli U. Preparation of polymeric nanoparticles using different stabilizing agents. J Fac Pharm Ankara. 2009;38(4):257-268.
4. Mehrotra A, Pandit JK. Critical Process Parameters Evaluation of Modified Nanoprecipitation Method on Lomustine Nanoparticles and Cytostatic Activity Study on L132 Human Cancer Cell Line. J Nanomed Nanotechnol. 2012;3:8.
5. dos Santos KC, da Silva MFGF, Pereira-Filho ER, Fernandes JB, Polikarpov I, Forim MR. Polymeric nanoparticles loaded with the 3,5,3’-triiodothyroacetic acid (Triac), a thyroid hormone: factorial design, characterization, and release kinetics. Nanotechnol Sci Appl. 2012;5:37-48.
6. Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure:review of efficacy and mechanisms. Adv Nutr. 2012;3:39-46.
7. Molina MF, Sanchez-Reus I, Iglesias I, Benedi J. Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol Pharm Bull. 2003;26(10):1398-1402.
8. Kumar VD, Verma PRP, Singh SK. Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT-Food Sci Technol 2015;61:330-338.
9. Shaji J, Iyer S. Novel Double Loaded Quercetin Liposomes: Evidence of Superior Therapeutic Potency Against CCl4 Induced Hepatotoxicity – A Comparative Study. Asian J Pharm Clin Res. 2012;5(2):104-108.
10. Nday CM, Halevas E, Jackson GE, Salifoglou A. Quercetin encapsulation in modified silica nanoparticles: potential use against Cu(II)-induced oxidative stress in neurodegeneration. J Inorg Biochem. 2015;145:51-64.
11. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, et al. Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med. 2011;2011:591356.
12. Suntres ZE. Liposomal Antioxidants for Protection against Oxidant-Induced Damage. J Toxicol. 2011;2011:152474.
13. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces. 2010;80:184-192.
14. Mignet N, Seguin J, Chabot GG. Bioavailability of polyphenol liposomes: a challenge ahead. Pharmaceutics. 2013;5:457-471.
15. Landi-Librandi AP, Chrysostomo TN, Azzolini AECS, Marzocchi-Machado CM, de Oliveira CA, Lucisano-Valim YM. Study of quercetin-loaded liposomes as potential drug carriers: in vitro evaluation of human complement activation. J Liposome Res. 2012;22(2):89-99.
16. Morales-Cruz M, Flores-Fernández GM, Morales-Cruz M, Orellano EA, Rodriguez-Martinez JA, Ruiz M, et al. Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sci. 2012;2:79-85.
17. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1-R4.
18. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887-913.
19. Pinto Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2:8-21.
20. Porfire AS, Tomuță I, Leucuța SE, Achim M.
Superoxide dismutase loaded liposomes. The influence of formulation factors on enzyme encapsulation and release. Farmacia. 2013;61(5):865-873.
21. Jain A, Jain SK. Formulation and optimization of temozolomide nanoparticles by 3 factor 2 level factorial design. Biomatter. 2013;3(2): e25102-1- e25102-13.
22. Gonzalez-Rodriguez ML, Barros LB, Palma J, Gonzalez- Rodriguez PL, Rabasco AM. Application of statistical experimental design to study the formulation variables influencing the coating process of lidocaine liposomes. Int J Pharm. 2007;337:336-345.
23. Luo X, Guan R, Chen X, Tao M, Ma J, Zhao J. Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells. Nanoscale Res Lett. 2014;9(1): 291.
24. Leucuța SE, Tomuță I. Planuri experimentale și optimizarea formulării medicamentelor. Cluj-Napoca: Editura Risoprint; 2011.
25. Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnology. 2012;10:38.
26. Zhang C, Gu C, Peng F, Liu W, Wan J, Xu H, Lam CW, Yang X. Preparation and Optimization of Triptolide-Loaded Solid Lipid Nanoparticles for Oral Delivery with Reduced Gastric Irritation. Molecules. 2013;18:13340-13356.
27. Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J Liposome Res. 2010;20(2):97-104.
28. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S. Design of Experiments. Principles and Applications. 3rd ed. Umeå: MKS Umetrics AB; 2008.
29. Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, Peng X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic deliver of chloramphenicol using Box-Behnken design. Int J Nanomedicine. 2011;6:683-692.
30. Muzyka K, Karim K, Guerreiro A, Poma A, Piletsky S. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreactor. Nanoscale Res Lett. 2019(1):154.
31. Xie H, Smith JW. Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system. J Nanobiotechnology. 2010;8:18.
32. Shah U, Joshi G, Sawant K. Improvement in antihypertensive antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater Sci Eng C Mater Biol Appl. 2014;35:153-163.
33. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharmaceut Res. 2004;21(8):1428- 1439.
34. Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, Cai Z, Li Y, Chen Q. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69:445-453.
35. Kumar MNVR, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25:1771-1777.
36. Narayanan K, Subrahmanyam VM, Rao JV. A Fractional Factorial Design to Study the Effect of Process Variables on the Preparation of Hyaluronidase Loaded PLGA Nanoparticles. Enzyme Res. 2014;2014:162962.
37. Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. The Effect of Process Variables on the Properties of Ketoprofen Loaded Solid Lipid Nanoparticles of Beeswax and Carnauba Wax. Iran J Chem Chem Eng. 2010;29(4):181-187.
38. Shah R, Eldridge D, Palombo E, Harding I. Optimisation and Stability of Solid Lipid Nanoparticls using Particle Size and Zeta Potential. Journal of Physical Science. 2014;25(1):59-75.
39. Lasoń E, Sikora E, Ogonowski J. Influence of process parameters on properties of Nanostructured Lipid Carriers (NLC) formulation. Acta Biochim Pol. 2013;60(4):773-777.
40. Zhang C, Gu C, Peng F, Liu W, Wan J, Xu H, Lam CW, Yang X. Preparation and Optimization of Triptolide-Loaded Solid Lipid Nanoparticles for Oral Delivery with Reduced Gastric Irritation. Molecules. 2013;18:13340-13356.
41. Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, Cai Z, Li Y, Chen Q. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69:445-453.
42. Zhao H, Gagnon J, Häfeli UO. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres. Biomagn Res Technol 2007;5:2
43. Lasoń E, Sikora E, Ogonowski J. Influence of process parameters on properties of Nanostructured Lipid Carriers (NLC) formulation. Acta Biochim Pol. 2013;60(4):773-777.
44. Nikam VK, Kotade KB, Gaware VM. Dolas RT. Eudragit a versatile polymer: A review. Pharmacol Online 2011;1:152-64.
45. Raymond CR, Paul JS, Marian EQ. Handbook of Pharmaceutical Excipients. 6th ed. Washington, London: APHA Publications, Pharmaceutical Press; 2003. p. 525-33.