In Vitro Efficacy of Ceftazidime-Avibactam among Carbapenem Resistant Enterobacterales and Pseudomonas aeruginosa Clinical Isolates in Specialized Pediatric Hospital

Main Article Content

Amany M Ahmed
Doaa M Ghaith
Mona Mohiedden Abdelhaleem
Amal M Sayed

Keywords

Ceftazidime-avibactam, Carbapenem resistant, Multiplex PCR

Abstract

Background: Carbapenem-resistant organisms (CRO) have been disseminated worldwide. Ceftazidime-avibactam (CZA/AVI) has been suggested as an alternative option.
Objectives: This study aims to assess the prevalence of CRO among clinical isolates and to investigate the in vitro antimicrobial activity of CZA/AVI.
Design: Our observational experimental in vitro study was conducted over one year.
Settings: Pediatric specialized teaching hospital.
Material and Methods: Identification was done by MALDI-TOF-MS. CZA/AVI susceptibility testing was done by disk diffusion. The presence of carbapenemases was detected by modified carbapenem inactivation method and multiplex PCR tests.
Main Outcome Measures: Prevalence of CRO was 72.6%; (80.0%) of our isolates were Klebsiella pneumoniae. The most frequently detected carbapenamase genes were blaNDM (70.0%), followed by blaOXA-48 (68.24%) and blaKPC (16.47%).
Sample size: 170 clinical isolates of Enterobacterales and Pseudomonas aeruginosa.
Result: CZA/AVI in vitro efficacy was 30.0%.
Conclusion: Due to the high prevalence of metallo B lactamases in our hospital CZA/AVI may not be a good therapeutic option for CRO infections, emphasizing the importance of improving infection prevention and control.
Limitations: larger sample size is needed and studying the in vivo response in correlation with the invitro results will be of great benefit.

Abstract 288 | pdf Downloads 188

References

1. Lee BY, Bartsch SM, Wong KF, et al. The potential trajectory of carbapenem-resistant Enterobacteriaceae, an emerging threat to health-care facilities, and the impact of the Centers for Disease Control and Prevention toolkit. Am J Epidemiol. 2016; 183(5):471-9.
2. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791.
3. Schwaber MJ, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: A potential threat. Jama. 2008; 300(24):2911-3.
4. El-Kholy A, El-Mahallawy HA, Elsharnouby N, et al. Landscape of multidrug-resistant gram-negative infections in Egypt: Survey and literature review. Infect Drug Resist. 2021:1905-20.
5. Kiratisin P, Kazmierczak K, Stone GG. In vitro activity of ceftazidime/avibactam and comparators against carbapenemase-producing Enterobacterales and Pseudomonas aeruginosa isolates collected globally between 2016 and 2018. J Glob Antimicrob Resist. 2021; 27:132-41.
6. Dietl B, Martínez LM, Calbo E, et al. Update on the role of ceftazidime-avibactam in the management of carbapenemase-producing Enterobacterales. Future Microbiol. 2020; 15(7):473-84.
7. Sader HS, Castanheira M, Shortridge D, et al. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from US medical centers, 2013 to 2016. Antimicrob. Agents Chemother. 2017;61(11):e01045-17.
8. Di Bella S, Giacobbe DR, Maraolo AE, et al. Resistance to ceftazidime/avibactam in infectionsand colonisations by KPC-producing Enterobacterales: A systematic review of observational clinical studies. J Glob Antimicrob Resist.. 2021; 25:268-81.
9. Gatti M, Cojutti PG, Campoli C, et al. A proof of concept of the role of TDM-based clinical pharmacological advices in optimizing antimicrobial therapy on real-time in different paediatric settings. Front Pharmacol. 2021;12.
10. CLSI. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Wayne, PA: Clinical and laboratory standards institute; 2019.
11. CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and laboratory standards institute; 2020.
12. Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011; 70(1):119-23.
13. Kotb S, Lyman M, Ismail G, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare–associated Infections Surveillance Data, 2011–2017. Antimicrob. Resist. Infect. Control. 2020;9(1):1-9.
14. Raheel A, Azab H, Hessam W, et al. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal University Hospitals in Ismailia, Egypt. Microb Infect Dis. 2020;1(1):24-33.
15. Ghaith DM, Mohamed ZK, Farahat MG, et al. Colonization of intestinal microbiota with carbapenemase-producing Enterobacteriaceae in paediatric intensive care units in Cairo, Egypt. Arab J Gastroenterol. 2019;20(1):19-22. doi: 10.1016/j.ajg.2019.01.002.
16. Makharita RR, El-Kholy I, Hetta HF, et al. Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections. Infect Drug resist. 2020;13:3991.
17. Tawfick MM, Alshareef WA, Bendary HA, et al. The emergence of carbapenemase bla NDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis. 2020:1-9.
18. Gelmez GA, Can B, Hasdemir U, et al. Evaluation of phenotypic tests for detection of carbapenemases: New modifications with new interpretation. J Infect Chemother. 2021;27(2):226-31.
19. Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018;56(11):e01140-18.
20. Ghaith DM, Zafer MM, Said HM, et al. Genetic diversity of carbapenem-resistant Klebsiella Pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis 2020;39(3):583-91.
21. Wassef M, Abdelhaleim M, Ghaith D, et al. Emerging New Delhi metallo-β-lactamase-1-type-producing gram-negative bacteria isolated from Cairo University Pediatric Hospital, Cairo, Egypt. J. Glob. Antimicrob. Resist. 2016;7:84-7.
22. Aamir R, Ateya RM, Arafa M, et al. Ceftazidime/avibactam efficiency tested In vitro against carbapenem-resistant Klebsiella pneumoniae isolated from neonates with sepsis. Microb Infect Dis. 2021;2(3):529-40.
23. Ozger HS, Evren E, Yildiz SS, et al. Ceftazidime–Avibactam susceptibility among carbapenem-resistant Enterobacterales in a pilot study in Turkey. Acta Microbiologica et Immunologica Hungarica. 2021;68(4):256-61.
24. Yin D, Wu S, Yang Y, et al. Results from the China Antimicrobial Surveillance Network (CHINET) in 2017 of the in vitro activities of ceftazidime-avibactam and ceftolozane-tazobactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019;63(4):e02431-18.
25. Sonnevend Á, Ghazawi A, Darwish D, et al. In vitro efficacy of ceftazidime-avibactam, aztreonam-avibactam and other rescue antibiotics against carbapenem-resistant Enterobacterales from the Arabian Peninsula. Int J Infect Dis. 2020;99:253-9.
26. Barber KE, Pogue JM, Warnock HD, et al. Ceftazidime/avibactam versus standard-of-care agents against carbapenem-resistant Enterobacteriaceae harbouring bla KPC in a one-compartment pharmacokinetic/pharmacodynamic model. J Antimicrobi Chemother. 2018;73(9):2405-10.
27. Abdelhalim MM, Saafan GS, El-Sayed HS, et al. In vitro antibacterial effect of probiotics against Carbapenamase-producing multidrug-resistant Klebsiella pneumoniae clinical isolates, Cairo, Egypt. J Egypt Public Health Assoc. 2022;97(1):1-7.