Synergestic effect of gallic acid lipid nanoparticles to improve the physiochemical property and cellular uptake against MDA MB 231 Cancer cell line: Apoptosis, signaling pathway and cytotoxicity

Main Article Content

Sandhiya .V
Priyanka Sinha
T.Sathish Kumar
R. Siva kumar
Swetha B
Deepika A
Sona Jain P
Theresa Evangilin P

Keywords

Apoptosis, triple negative breast cancer

Abstract

Introduction: Gallic acid (GA), a phenolic molecule that occurs naturally, has been shown to have anti-tumor properties for a number of cancer types. The effect of GA on breast tumor cells MDA-MB-231 Triple Negative was examine in the current study.
Methods: Techniques were utilised for cell cycle analysis, GSH concentration, Annexin V assay, light and fluorescence microscopy, restriction of cell growth (MTT assay), preparation, characterisation, and measurement of the mitochondrial membrane potential.
Results: It was shown that the produced GANP significantly reduced the ability of MDAMB-231 cells to multiply. Moreover, this might result in glutathione depletion, an increase in ROS levels, and cytotoxic activity in MDA-MB-231 cells. Analysis using flow cytometry revealed so as to the GANP enhanced the inhabitants of sub-G1 cells. Also, the Annexin V/PI test and fluorescence labelling both established so as to the addition of GA dramatically increased the amount of apoptotic cells. Therefore, research of the oxidative damage-related sickness revealed that the amalgamation of GA greatly decrease oxidative damage in healthy cells while increasing glutathione levels and lowering lipid peroxidase levels in MDA-MB-231 cells
Conclusion: These consequences propose that GA as GANP may have potential as a chemopreventive treatment for triple negative breast cancer.

Abstract 150 | PDF Downloads 138

References

1. Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers, 13(17), 4287. https://doi.org/10.3390/cancers13174287
2. Ginsburg, O., Bray, F., Coleman, M. P., Vanderpuye, V., Eniu, A., Kotha, S. R., Sarker, M., Huong, T. T., Allemani, C., Dvaladze, A., Gralow, J., Yeates, K., Taylor, C., Oomman, N., Krishnan, S., Sullivan, R., Kombe, D., Blas, M. M., Parham, G., Kassami, N., … Conteh, L. (2017). The global burden of women's cancers: a grand challenge in global health. Lancet (London, England), 389(10071), 847–860. https://doi.org/10.1016/S0140-6736(16)31392-7
3. Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., & Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of basic medical sciences, 22(3), 225–237. https://doi.org/10.22038/ijbms.2019.32806.7897
4. Rezaei-Seresht, H., Cheshomi, H., Falanji, F., Movahedi-Motlagh, F., Hashemian, M., & Mireskandari, E. (2019). Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna journal of phytomedicine, 9(6), 574–586. https://doi.org/10.22038/AJP.2019.13475
5. Brewster, A. M., Chavez-MacGregor, M., & Brown, P. (2014). Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. The Lancet. Oncology, 15(13), e625–e634. https://doi.org/10.1016/S1470-2045(14)70364-X
6. Shirazi, O. U., Khattak, M. M. A. K., & Shukri, N. A. M. (2014). Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. Journal of Pharmacognosy and Phytochemistry, 3(3), 104-108. https://www.phytojournal.com/vol3Issue3/Issue_sep_2014/29.1.pdf
7. Gan, J. E., & Chin, C. Y. (2021). Formulation and characterisation of alginate hydrocolloid film dressing loaded with gallic acid for potential chronic wound healing. F1000Research, 10, 451. https://doi.org/10.12688/f1000research.52528.1
8. Kaparekar, P. S., Pathmanapan, S., & Anandasadagopan, S. K. (2020). Polymeric scaffold of Gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. International journal of biological macromolecules, 165(Pt A), 930–947. https://doi.org/10.1016/j.ijbiomac.2020.09.212
9. Ullah, K. H., Rasheed, F., Naz, I., Ul Haq, N., Fatima, H., Kanwal, N., & Ur-Rehman, T. (2022). Chitosan Nanoparticles Loaded Poloxamer 407 Gel for Transungual Delivery of Terbinafine HCl. Pharmaceutics, 14(11), 2353. https://www.mdpi.com/1999-4923/14/11/2353/pdf
10. Mahboob, T., Nawaz, M., de Lourdes Pereira, M. et al. PLGA nanoparticles loaded with Gallic acid- a constituent of Leea indica against Acanthamoeba triangularis. Sci Rep 10, 8954 (2020).
https://doi.org/10.1038/s41598-020-65728-0
11. Singh, B., & Dhiman, A. (2015). Designing bio-mimetic moxifloxacin loaded hydrogel wound dressing to improve antioxidant and pharmacology properties. Rsc Advances, 5(55), 44666-44678.https://pubs.rsc.org/en/content/getauthorversionpdf/C5RA06857F
12. Kamalakaran, A.S. Molecular Adducts of Isoniazid: Crystal Structure, Electronic Properties, and Hirshfeld Surface Analysis. J Struct Chem 59, 1518–1533 (2018). https://doi.org/10.1134/S002247661807003X
13. Erdagi, S. I., & Yildiz, U. (2019). Diosgenin-conjugated PCL–MPEG polymeric nanoparticles for the co-delivery of anticancer drugs: Design, optimization, in vitro drug release and evaluation of anticancer activity. New Journal of Chemistry, 43(17), 6622-6635.https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj00659a
14. Wu, I. Y., Bala, S., Škalko-Basnet, N., & Di Cagno, M. P. (2019). Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. European Journal of Pharmaceutical Sciences, 138, 105026.https://www.sciencedirect.com/science/article/pii/S0928098719302908
15. Salehcheh, M., Alboghobeish, S., Dehghani, M.A. et al. Multi-walled carbon nanotubes induce oxidative stress, apoptosis, and dysfunction in isolated rat heart mitochondria: protective effect of naringin. Environ Sci Pollut Res 27, 13447–13456 (2020). https://doi.org/10.1007/s11356-020-07943-w
16. Pudake, R. N., Chauhan, N., & Kole, C. (Eds.). (2019). Nanoscience for sustainable agriculture (Vol. 711). Cham: Springer International Publishing.https://link.springer.com/book/10.1007/978-3-319-97852-9
17. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters, 6(4), 662–668. https://doi.org/10.1021/nl052396o
18. Zhu, R., & Lu, S. (2010). A high-resolution TEM investigation of nanoparticles in soils. In Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone (pp. 282-284). Springer Berlin Heidelberg.https://link.springer.com/chapter/10.1007/978-3-642-05297-2_81
19. Askar, M. A., El-Nashar, H. A., Al-Azzawi, M. A., Rahman, S. S. A., & Elshawi, O. E. (2022). Synergistic Effect of Quercetin Magnetite Nanoparticles and Targeted Radiotherapy in Treatment of Breast Cancer. Breast cancer : basic and clinical research, 16, 11782234221086728. https://doi.org/10.1177/11782234221086728
20. Otoya-Martinez, N., Leite, L. G., Harakava, R., Touray, M., Hazir, S., Chacon-Orozco, J., & Bueno, C. J. (2023). Disease caused by Neofusicoccum parvum in pruning wounds of grapevine shoots and its control by Trichoderma spp. and Xenorhabdus szentirmaii. Fungal biology, 127(1-2), 865–871. https://doi.org/10.1016/j.funbio.2022.12.002
21. Zhang, K., Shen, Q., Fang, Y., Sun, Y., Ding, J., & Chen, Y. (2019). AZD9291 inactivates the PRC2 complex to mediate tumor growth inhibition. Acta Pharmacologica Sinica, 40, 1587 1595.https://www.semanticscholar.org/paper/AZD9291-inactivates-the-PRC2-complex-to-mediate-Zhang-Shen/0a7b79d71dd5b9686ac8bb8197d89f6431398b8b
22. Dehghani, N., Tafvizi, F., & Jafari, P. (2021). Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. BioImpacts: BI, 11(4), 245.https://bi.tbzmed.ac.ir/Article/bi-22097
23. Konopko A, Kusio J, Litwinienko G. Antioxidant Activity of Metal Nanoparticles Coated with Tocopherol-Like Residues—The Importance of Studies in Homo- and Heterogeneous Systems. Antioxidants. 2020; 9(1):5. https://doi.org/10.3390/antiox9010005
24. Rahman, M.M., Islam, M.B., Biswas, M. et al. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes 8, 621 (2015). https://doi.org/10.1186/s13104-015-1618-6
25. Wu Y-Z, Tsai Y-Y, Chang L-S, Chen Y-J. Evaluation of Gallic Acid-Coated Gold Nanoparticles as an Anti-Aging Ingredient. Pharmaceuticals. 2021; 14(11):1071. https://doi.org/10.3390/ph14111071
26. Sandhiya, V., Ubaidulla, U. Enhancing cellular uptake and membrane permeability of gallic acid for breast cancer therapy via folate-tagged PEGylated iron oxide nanoparticles has theronastic agent. Bull Natl Res Cent 46, 234 (2022). https://doi.org/10.1186/s42269-022-00909-7
27. Sulaiman, A. D. I., Adamu, M. B., Hassan, U., & Aliyu, S. M. (2021). Investigation into the Application of Cissus Populnea as Drilling Fluid Additive (Viscosifier) for Water Based Mud. European Journal of Engineering and Technology Research, 6(7), 33-37.https://doi.org/10.24018/ejeng.2021.6.7.2611
28. Almukhtar, J. G. J., & Karam, F. F. (2020, November). Preparation characterization and application of Chitosan nanoparticles as drug
carrier. In Journal of Physics: Conference Series (Vol. 1664, No. 1, p. 012071). IOP Publishing.https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012071
29. Patil, P., & Killedar, S. (2021). Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. Journal of Drug Delivery Science and Technology, 63, 102523.https://www.sciencedirect.com/science/article/abs/pii/S1773224721002033#:~:text=The%20present%20study%20was%20undertaken,targeted%20delivery%20to%20colorectal%20cancer.
30. Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology advances, 32(4), 711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006
31. Al-Thabaiti, S. A., Al-Nowaiser, F. M., Obaid, A. Y., Al-Youbi, A. O., & Khan, Z. (2008). Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study. Colloids and Surfaces B: Biointerfaces, 67(2), 230-237.https://www.sciencedirect.com/science/article/abs/pii/S0927776508003263
32. Hassani, A., Azarian, M.M.S., Ibrahim, W.N. et al. Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Rep 10, 17808 (2020). https://doi.org/10.1038/s41598-020-71175-8
33. Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Mohammadi M, Lorenzo JM. Chitosan Nanoparticles as a Promising Nanomaterial for Encapsulation of Pomegranate (Punica granatum L.) Peel Extract as a Natural Source of Antioxidants. Nanomaterials. 2021; 11(6):1439. https://doi.org/10.3390/nano11061439
34. Cohen, D. J., Reynaldo, W. V., Borba, V. B., Theodoro, T. R., Petri, G., Cavalheiro, R. P., Mader, A. M., Han, S. W., Pinhal, M. A., & Glina, S. (2022). New in vivo model to assess macroscopic, histological, and molecular changes in Peyronie's disease. Andrology, 10(1), 154–165. https://doi.org/10.1111/andr.13092
35. Lin, S., Qin, H. Z., Li, Z. Y., Zhu, H., Long, L., & Xu, L. B. (2022). Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Frontiers in Pharmacology, 13.https://www.frontiersin.org/articles/10.3389/fphar.2022.1049117
36. Skiba, J., Karpowicz, R., Szabo, I., Therrien, B., & Kowalski, K. (2015). Synthesis and anticancer activity studies of ferrocenyl-thymine-3, 6-dihydro-2H-thiopyranes–A new class of metallocene-nucleobase derivatives. Journal of Organometallic Chemistry, 794, 216-222.https://www.researchgate.net/publication/282307374_Synthesis_and_anticancer_activity_studies_of_ferrocenyl-thymine-36-dihydro-2H-thiopyranes_-_A_new_class_of_metallocene-nucleobase_derivatives
37. Liao, C., Xu, D., Liu, X., Fang, Y., Yi, J., Li, X., & Guo, B. (2018). Iridium (III) complex-loaded liposomes as a drug delivery system for lung cancer through mitochondrial dysfunction. International journal of nanomedicine, 13, 4417–4431. https://doi.org/10.2147/IJN.S170035
38. Bai, Y., Yang, Y., Cui, B., Lin, D., Wang, Z., & Ma, J. (2022). Temporal effect of melatonin posttreatment on anoxia/reoxygenation injury in H9c2 cells. Cell biology international, 46(4), 637–648. https://doi.org/10.1002/cbin.11759
39. Jingwen Zhang, Chengtian Zhao, Feifei Shi, Shaozhi Zhang, Sijie Wang, Xizeng Feng, Melatonin alleviates the deterioration of oocytes and hormonal disorders from mice subjected to glyphosate, Molecular and Cellular Endocrinology, Volume 520, 2021, 111073, ISSN 0303-7207. https://doi.org/10.1016/j.mce.2020.111073
40. Zhou, L. C., Liang, Y. F., Huang, Y., Yang, G. X., Zheng, L. L., Sun, J. M., Li, Y., Zhu, F. L., Qian, H. W., Wang, R., & Ma, L. (2021). Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer's disease. European journal of medicinal chemistry, 219, 113426. https://doi.org/10.1016/j.ejmech.2021.113426
41. Zeng, M., Su, Y., Li, K., Jin, D., Li, Q., Li, Y., & Zhou, B. (2020). Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Frontiers in Pharmacology, 11, 1222.https://www.frontiersin.org/articles/10.3389/fphar.2020.01222
42. Dehghani, M. A., Shakiba Maram, N., Moghimipour, E., Khorsandi, L., Atefi Khah, M., & Mahdavinia, M. (2020). Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochimica et biophysica acta. Molecular basis of disease, 1866(12), 165911. https://doi.org/10.1016/j.bbadis.2020.165911
43. Hajipour, Hamed & Hamishehkar, Hamed & Rahmati, Mohammad & Shanehbandi, Dariush & Nazari Soltan Ahmad, Saeed & HASANI, Dr. AKBAR. (2018). Enhanced Anti-Cancer Capability of Ellagic Acid Using Solid Lipid Nanoparticles (SLNs). International Journal of Cancer Management. In Press. 10.5812/ijcm.9402. https://www.researchgate.net/publication/322970979_Enhanced_Anti-Cancer_Capability_of_Ellagic_Acid_Using_Solid_Lipid_Nanoparticles_SLNs
44. Patel, P., Raval, M., Manvar, A., Airao, V., Bhatt, V., & Shah, P. (2022). Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PloS one, 17(5), e0267257. https://doi.org/10.1371/journal.pone.0267257