Gastro-retentive drug delivery technologies and their applications with cardiovascular medications
Main Article Content
Keywords
physiological, system, current, study
Abstract
Many trials have recently been conducted to increase drug absorption and the efficacy of oral dose formulations (DFs). Various technologies have been developed in recent years to solve physiological obstacles such as changes in gastric retention and emptying time by researching and developing controlled-release oral medication delivery systems. To develop therapeutic drug efficacy, medicines that display a window type of absorption, have stability problems at basic pH, have high solubility in the acidic environment, or which are locally active in the gastric medium can be loaded into gastroretentive drug delivery systems (GRDDSs). For the past three decades, (GRDFs) have been developed. Historically, they were intended for veterinary medicine, but the design was later modified
to improve human medication treatment. Sustained oral-release Gastroretentive dosage forms have several benefits for pharmaceuticals which are absorbed through the upper gastrointestinal system, and they increase the bioavailability of treatments with a narrow absorption window. Expandable systems, mucosal adhesive systems, ultra-porous floating systems, high-density systems, magnetic systems, and hydrogels, are among the strategies described in this review to lengthen stomach residency time. The current study discusses some cardiovascular medications that could benefit from gastroretentive methods, as well as the elements that determine gastric retaining time and how gastroretentive systems work.
References
Pharmaceutics, vol. 11, no. 4, 2019, doi: 10.3390/pharmaceutics11040193.
2. E. A. Klausner, E. Lavy, M. Friedman, and A. Hoffman, “Expandable gastroretentive dosage forms,” Journal of Controlled Release, vol. 90,
no. 2. Elsevier, pp. 143–162, Jun. 24, 2003. doi: 10.1016/S0168-3659(03)00203-7.
3. Hoffman, “Pharmacodynamic aspects of sustained release preparations,” 1998.
4. M. Lopes, C. Bettencourt, A. Rossi, F. Buttini, and P. Barata, “Overview on gastroretentive drug delivery systems for improving drug
bioavailability,” Int J Pharm, vol. 510, no. 1, pp. 144–158, 2016, doi: 10.1016/j.ijpharm.2016.05.016.
5. S. Abdul, A. v. Chandewar, and S. B. Jaiswal, “A flexible technology for modified-release drugs: Multiple-unit pellet system (MUPS),” Journal of Controlled Release, vol. 147, no. 1. pp. 2–16, Oct. 2010. doi: 10.1016/j.jconrel.2010.05.014.
6. S. S. Davis, “The Design And Evaluation Of Controlled Release Systems For The Gastrointestinal Tract*,” 1985.
7. S. S. Davis ’, J. G. Hardy ’, M. J. Taylor ’, D. R. Whalley, and C. G. Wilson, “A comparative study of the gastrointestinal of a pellet and tablet
formulation 167 transit,” 1984.
8. J. 8 Dressman, P. Bass, W. A. Ritschel~, D. R. Friend^, and A. Rubinstein, “Journal Of Pharmaceutical Sciences A P M Gastrointestinal
Parameters That Influence Oral Medications,” 1993.
9. R. Awasthi and G. T. Kulkarni, “Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention
technologies: Where do we stand?,” Drug Delivery, vol. 23, no. 2. Taylor and Francis Ltd, pp. 378–394, Feb. 12, 2016. doi:
10.3109/10717544.2014.936535.
10. Melocchi et al., “Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing
and extrusion,” Int J Pharm, vol. 571, Nov. 2019, doi: 10.1016/j.ijpharm.2019.118700.
11. T. Sahasathian, N. Praphairaksit, and N. Muangsin, “Mucoadhesive and floating chitosancoated alginate beads for the controlled gastric
release of amoxicillin,” Arch Pharm Res, vol. 33, no. 6, pp. 889–899, Jun. 2010, doi: 10.1007/s12272-010-0612-8.
12. R. A. K. Arza, C. S. R. Gonugunta, and P. R. Veerareddy, “Formulation and evaluation of swellable and floating gastroretentive
ciprofloxacin hydrochloride tablets,” AAPS PharmSciTech, vol. 10, no. 1, pp. 220–226, 2009, doi: 10.1208/s12249-009-9200-y.
13. J. Zheng, C. Liu, D. Bao, Y. Zhao, and X. Ma, “Preparation and evaluation of floatingbioadhesive microparticles containing clarithromycin for the eradication of Helicobacter pylori,” J Appl Polym Sci, vol. 102, no. 3, pp. 2226–2232, Nov. 2006, doi: 10.1002/app.24319.
14. Madgulkar, S. Kadam, and V. Pokharkar, “Studies on formulation development of mucoadhesive sustained release itraconazole
tablet using response surface methodology,” AAPS PharmSciTech, vol. 9, no. 3, pp. 998–1005, 2008, doi: 10.1208/s12249-008-9119-8.
15. R. B. Umamaheswari, S. Jain, P. K. Tripathi, G. P. Agrawal, and N. K. Jain, “FloatingBioadhesive Microspheres Containing Acetohydroxamic Acid for Clearance of Helicobacter Pylori,” Drug Deliv, vol. 9, pp. 223–231, 2002, doi: 10.1080/1522795029009780.
16. E. A. Klausner, E. Lavy, M. Barta, E. Cserepes, M. Friedman, and A. Hoffman, “Novel Gastroretentive Dosage Forms: Evaluation of Gastroretentivity and Its Effect on Levodopa Absorption in Humans,” 2003.
17. S. Sivaneswari, E. Karthikeyan, and P. J. Chandana, “Novel expandable gastro retentive system by unfolding mechanism of levetiracetam
using simple lattice design – Formulation optimization and in vitro evaluation,” Bulletin of Faculty of Pharmacy, Cairo University, vol. 55, no. 1, pp. 63–72, Jun. 2017, doi: 10.1016/j.bfopcu.2017.02.003.
18. H. Blaesi and N. Saka, “Expandable fibrous dosage forms for prolonged drug delivery,” Materials Science and Engineering C, vol. 120, Jan. 2021, doi: 10.1016/j.msec.2019.110144.
19. B. Rimawi, R. H. Muqedi, and F. I. Kanaze, “Development of Gabapentin Expandable Gastroretentive Controlled Drug Delivery
System,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-48260-8.
20. Sauzet, M. Claeys-Bruno, M. Nicolas, J. Kister, P. Piccerelle, and P. Prinderre, “An innovative floating gastro retentive dosage system:
Formulation and in vitro evaluation,” Int J Pharm, vol. 378, no. 1–2, pp. 23–29, Aug. 2009, doi: 10.1016/j.ijpharm.2009.05.027.
21. Berner and V. E. Cowles, “Case studies in swelling polymeric gastric retentive tablets,” Expert Opinion on Drug Delivery, vol. 3, no. 4.
pp. 541–548, Jul. 2006. doi: 10.1517/17425247.3.4.541.
22. N. Inverardi et al., “Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the
development of gastroretentive drug delivery systems,” J Mech Behav Biomed Mater, vol. 124, Dec. 2021, doi: 10.1016/j.jmbbm.2021.104814.
23. R. Gröning, M. Berntgen, and M. Georgarakis, “Acyclovir serum concentrations following peroral administration of magnetic depot tablets
and the influence of extracorporal magnets to control gastrointestinal transit,” 1998.
24. V. K. Pawar, S. Kansal, S. Asthana, and M. K. Chourasia, “Industrial perspective of gastroretentive drug delivery systems: Physicochemical, biopharmaceutical, technological and regulatory consideration,” Expert Opinion on Drug Delivery, vol. 9, no. 5. pp. 551–565, May 2012. doi: 10.1517/17425247.2012.677431.
25. H. Minami and R. W. Mccallum, “The Physiology and Pathophysiology of Gastric Emptying in Humans,” Gastroenterology, vol. 86, no. 6, pp. 1592–1610, 1984, doi: 10.1016/S0016-5085(84)80178-X.
26. P. Prinderre, C. Sauzet, and C. Fuxen, “Advances in gastro retentive drug-delivery systems,” Expert Opinion on Drug Delivery, vol. 8, no. 9. pp. 1189–1203, Sep. 2011. doi: 10.1517/17425247.2011.592828.
27. H. Vrbanac, J. Trontelj, S. Berglez, K. Kreft, D. Krajcar, and I. Legen, “Simulated migrating motor complex and its impact on the release
properties of hydrophilic matrix systems,” J Drug Deliv Sci Technol, vol. 55, Feb. 2020, doi: 10.1016/j.jddst.2019.101338.
28. V. D. Prajapati, G. K. Jani, T. A. Khutliwala, and B. S. Zala, “Raft forming system - An upcoming approach of gastroretentive drug delivery system,” Journal of Controlled Release, vol. 168, no. 2. pp. 151–165, Jun. 10, 2013. doi: 10.1016/j.jconrel.2013.02.028.
29. P. Thapa and S. H. Jeong, “Effects of formulation and process variables on gastroretentive floating tablets with a high-dose soluble drug and experimental design approach,” Pharmaceutics, vol. 10, no. 3, Sep. 2018, doi: 10.3390/pharmaceutics10030161.
30. M. S. Chauhan, A. Kumar, and K. Pathak, “Osmotically regulated floating asymmetric membrane capsule for controlled site-specific
delivery of ranitidine hydrochloride: Optimization by central composite design,” AAPS PharmSciTech, vol. 13, no. 4, pp. 1492–1501, Dec. 2012, doi: 10.1208/s12249-012-9870-8.
31. G. M. Clarke, J. M. Newton, and M. D. Short, “Gastrointestinal transit of pellets of differing size and density,” 1993.
32. R. Talukder and R. Fassihi, “Gastroretentive delivery systems: A mini review,” Drug Development and Industrial Pharmacy, vol. 30, no. 10. pp. 1019–1028, 2004. doi: 10.1081/DDC200040239.
33. N. Salessiotis, “Measurement of the Diameter of the Pylorus in Man Part I. Experimental Project for Clinical Application.”
34. Streubel, J. Siepmann, and R. Bodmeier, “Gastroretentive drug delivery systems,” Expert Opinion on Drug Delivery, vol. 3, no. 2. pp. 217–
233, Mar. 2006. doi: 10.1517/17425247.3.2.217.
35. Streubel, J. Siepmann, and R. Bodmeier, “Drug delivery to the upper small intestine window using gastroretentive technologies,” Current
Opinion in Pharmacology, vol. 6, no. 5. pp. 501–508, Oct. 2006. doi: 10.1016/j.coph.2006.04.007.
36. S. Arora, J. Ali, A. Ahuja, R. K. Khar, and S. Baboota, “Floating Drug Delivery Systems: A Review,” 2005. [Online]. Available: http://www.aapspharmscitech.org
37. S. H. Shaha, J. K. Patel, K. Pundarikakshudu, and N. v Patel, “Gastro-retentive floating drug delivery system,” 2009.
38. Y. T. Wang et al., “Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: Influence of age, gender, study country and testing protocol,” Aliment Pharmacol Ther, vol. 42, no. 6, pp. 761–772, Sep. 2015, doi: 10.1111/apt.13329.
39. M. Feldman and C. Barnett, “Fasting Gastric pH and Its Relationship to True Hypochlorhydria in Humans,” 1991.
40. Krygowska-Wajs et al., “Evaluation of gastric emptying in familial and sporadic Parkinson disease,” Parkinsonism Relat Disord, vol. 15, no.
9, pp. 692–696, Nov. 2009, doi: 10.1016/j.parkreldis.2009.04.003.
41. L. C. Kaus and J. T. Fell, “EFFECT OF STRESS ON THE GASTRIC EMPTYING OF CAPSULES,” 1984.
42. Tomar, A. Upadhyay, S. K. Gupta, and S. Kumar, “An Overview on Gastroretentive Drug Delivery System: Current Approaches and
Advancements,” Current Research in Pharmaceutical Sciences, vol. 9, no. 1, pp. 12–16, Apr. 2019, doi: 10.24092/CRPS.2019.090102.
43. S. Murphy, V. Pillay, Y. E. Choonara, and L. C. du Toit, “Gastroretentive Drug Delivery Systems: Current Developments in Novel System Design and Evaluation,” 2009.
44. H. Chavda, I. Modhia, R. Patel, and C. Patel, “Preparation and characterization of superporous hydrogel based on different polymers,” Int J
Pharm Investig, vol. 2, no. 3, p. 134, 2012, doi: 10.4103/2230-973x.104396.
45. H. Omidian, J. G. Rocca, and K. Park, “Advances in superporous hydrogels,” Journal of Controlled Release, vol. 102, no. 1. pp. 3–12, Jan. 20, 2005. doi: 10.1016/j.jconrel.2004.09.028.
46. R. N. Chen, H. O. Ho, C. Y. Yu, and M. T. Sheu, “Development of swelling/floating gastroretentive drug delivery system based on a
combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with
CYP2C9 polymorphism,” European Journal of Pharmaceutical Sciences, vol. 39, no. 1–3, pp. 82–89, Jan. 2010, doi: 10.1016/j.ejps.2009.10.015.
47. Park, J. R. Robinson, and J. R. Robinson, “Bioadhesive polymers as platforms for oralcontrolled drug delivery: method to study
bioadhesion.”
48. N. Thirawong, J. Nunthanid, S. Puttipipatkhachorn, and P. Sriamornsak, “Mucoadhesive properties of various pectins on gastrointestinal mucosa: An in vitro evaluation using texture analyzer,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 1, pp. 132–140, Aug. 2007, doi: 10.1016/j.ejpb.2007.01.010.
49. K. Vasir, K. Tambwekar, and S. Garg, “Bioadhesive microspheres as a controlled drug delivery system,” International Journal of Pharmaceutics, vol. 255, no. 1–2. pp. 13–32, Apr. 14, 2003. doi: 10.1016/S0378-5173(03)00087-5.
50. P. L. Bardonnet, V. Faivre, W. J. Pugh, J. C. Piffaretti, and F. Falson, “Gastroretentive dosage forms: Overview and special case of Helicobacter pylori,” Journal of Controlled Release, vol. 111, no. 1–2. Elsevier, pp. 1–18, Mar. 10, 2006. doi: 10.1016/j.jconrel.2005.10.031.
51. Whitehead, J. T. Fell, J. H. Collett, H. L. Sharma, and A.-M. Smith, “Floating dosage forms: an in vivo study demonstrating prolonged gastric
retention,” 1998.
52. Rossi et al., “Floating modular drug delivery systems with buoyancy independent of release mechanisms to sustain amoxicillin and
clarithromycin intra-gastric concentrations,” Drug Dev Ind Pharm, vol. 42, no. 2, pp. 332–339, Jan. 2016, doi: 10.3109/03639045.2015.1054397.
53. v Mayavanshi and S. S. Gajjar, “Floating drug delivery systems to increase gastric retention of drugs: A Review,” Research J. Pharm. and Tech, vol. 1, no. 4, [Online]. Available: www.rjptonline.org
54. N. Singh and K. H. Kim, “Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention,” 2000. [Online].
Available: www.elsevier.com/locate/jconrel
55. Jiménez-Martínez, T. Quirino-Barreda, and L. Villafuerte-Robles, “Sustained delivery of captopril from floating matrix tablets,” Int J
Pharm, vol. 362, no. 1–2, pp. 37–43, Oct. 2008, doi: 10.1016/j.ijpharm.2008.05.040.
56. V. D. Prajapati, G. K. Jani, T. A. Khutliwala, and B. S. Zala, “Raft forming system - An upcoming approach of gastroretentive drug delivery
system,” Journal of Controlled Release, vol. 168, no. 2. pp. 151–165, Jun. 10, 2013. doi: 10.1016/j.jconrel.2013.02.028.
57. Sugito et al., “Gastrointestinal transit of nondisintegrating solid formulations in humans,” 1990.
58. F. Stockwell, S. S. Davis, and S. E. Walker, “In Vitro Evaluation Delivery Systems,” 1986.
59. “A New Multiple-Unit Oral Floating Dosage System. I: Preparation and In Vitro Evaluation of Floating and Sustained-Release Characteristics
Masaki Ichikawax, Sum10 Watanabe, And Yasuo Miyake.”
60. G. Baki, J. Bajdik, and K. Pintye-Hódi, “Evaluation of powder mixtures and hydrophilic gastroretentive drug delivery systems containing
zinc acetate and sodium bicarbonate,” J Pharm Biomed Anal, vol. 54, no. 4, pp. 711–716, Mar. 2011, doi: 10.1016/j.jpba.2010.10.026.
61. F. Atyabl, H. L. Sharma, H. A. H. Mohammad, and J. T. Fell, “controlled release In vivo evaluation of a novel gastric retentive formulation
based on ion exchange resins,” 1996.
62. S. Murphy, V. Pillay, Y. E. Choonara, and L. C. du Toit, “Gastroretentive Drug Delivery Systems: Current Developments in Novel System Design and Evaluation,” 2009.
63. R. Garg, G. D. Gupta, and G. & Gupta, “Progress in Controlled Gastroretentive Delivery Systems,” Tropical Journal of Pharmaceutical Research,vol. 7, no. 3, p. 1055, 2008, [Online]. Available: http://www.tjpr.org
64. U. K. Mandal, B. Chatterjee, and F. G. Senjoti, “Gastro-retentive drug delivery systems and their in vivo success: A recent update,” Asian Journal of Pharmaceutical Sciences, vol. 11, no. 5. Shenyang Pharmaceutical University, pp. 575–584, Oct. 01, 2016. doi: 10.1016/j.ajps.2016.04.007.
65. Siepmann and N. A. Peppas, “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC),”
Advanced Drug Delivery Reviews, vol. 64, no. SUPPL. pp. 163–174, Dec. 2012. doi: 10.1016/j.addr.2012.09.028.
66. Y. C. Chen, H. O. Ho, T. Y. Lee, and M. T. Sheu, “Physical characterizations and sustained release profiling of gastroretentive drug delivery systems with improved floating and swelling capabilities,” Int J Pharm, vol. 441, no. 1–2, pp. 162–169, Jan. 2013, doi: 10.1016/j.ijpharm.2012.12.002.
67. H. A. Pawar, P. R. Gharat, R. V. Dhavale, P. R. Joshi, and P. P. Rakshit, “Development and Evaluation of Gastroretentive Floating Tablets of
an Antihypertensive Drug Using Hydrogenated Cottonseed Oil,” ISRN Pharm, vol. 2013, pp. 1–9, Dec. 2013, doi: 10.1155/2013/137238.
68. “j.ijbiomac.2017.04.067”.
69. Y. AKIYAMA et al., “Anti‐hypertensive Effect of Oral Controlled‐release Microspheres Containing an ACE Inhibitor (Delapril
Hydrochloride) in Rats,” Journal of Pharmacy and Pharmacology, vol. 46, no. 8, pp. 661–665, 1994, doi: 10.1111/j.2042-7158.1994.tb03878.x.
70. G. J. Fernandes and M. Rathnanand, “Formulation Optimization for Gastroretentive Drug Delivery System of Carvedilol Cocrystals
Using Design of Experiment,” J Pharm Innov, vol. 15, no. 3, pp. 455–466, Sep. 2020, doi: 10.1007/s12247-019-09393-5.
71. G. Mirani, S. P. Patankar, and V. J. Kadam, “Risk-based approach for systematic development of gastroretentive drug delivery
system,” Drug Deliv Transl Res, vol. 6, no. 5, pp. 579–596, 2016, doi: 10.1007/s13346-016-0315-x.
72. S. C. Jagdale, A. J. Agavekar, S. v. Pandya, B. S. Kuchekar, and A. R. Chabukswar, “Formulation and evaluation of gastroretentive drug delivery system of propranolol hydrochloride,” AAPS PharmSciTech, vol. 10, no. 3, pp. 1071–1079, Sep. 2009, doi: 10.1208/s12249-009-9300-8.
73. F. N. Khan and M. H. G. Dehghan, “Enhanced bioavailability of atorvastatin calcium from stabilized gastric resident formulation,” AAPS
PharmSciTech, vol. 12, no. 4, pp. 1077–1086, Dec. 2011, doi: 10.1208/s12249-011-9673-3.
74. A. Klausner et al., “Furosemide pharmacokinetics and pharmacodynamics following gastroretentive dosage form administration to healthy
volunteers,” J Clin Pharmacol, vol. 43, no. 7, pp.711–720, Jul. 2003, doi: 10.1177/0091270003254575.
75. S. Boldhane and B. Kuchekar, “Development and optimization of metoprolol succinate gastroretentive drug delivery system,” Acta
Pharmaceutica, vol. 60, no. 4, pp. 415–425, Dec. 2010, doi: 10.2478/v10007-010-0031-x.
76. W. Sawicki, “Pharmacokinetics of verapamil and norverapamil from controlled release floating pellets in humans.” [Online]. Available:
www.elsevier.com/locate/ejphabio
77. S. Dey, S. Chattopadhyay, and B. Mazumder, “Formulation and evaluation of fixed-dose combination of bilayer gastroretentive matrix
tablet containing atorvastatin as fast-release and atenolol as sustained-release,” Biomed Res Int, vol. 2014, 2014, doi: 10.1155/2014/396106.
78. Desai and R. Purohit, “Development of Novel High Density Gastroretentive Multiparticulate Pulsatile Tablet of Clopidogrel Bisulfate Using
Quality by Design Approach,” AAPS PharmSciTech, vol. 18, no. 8, pp. 3208–3218, Nov. 2017, doi: 10.1208/s12249-017-0805-2.
79. Y. Mamani-Ortiz et al., “Prevalence and determinants of cardiovascular disease risk factors using the WHO STEPS approach in
Cochabamba, Bolivia,” BMC Public Health, vol. 19, no. 1, Jun. 2019, doi: 10.1186/s12889-019-7064-y.
80. X. Chang, T. Zhang, W. Zhang, Z. Zhao, and J. Sun, “Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress,” Oxidative Medicine and Cellular Longevity, vol. 2020. Hindawi Limited, 2020. doi: 10.1155/2020/5430407.
81. T. L. Thach et al., “Assessment of the Role of Ginsenoside RB1 Active Substance in Alginate/Chitosan/Lovastatin Composite Films,” Int J Polym Sci, vol. 2020, 2020, doi: 10.1155/2020/5807974.
82. Y. Liu, L. Chen, C. Zhou, J. Yang, Y. Hou, and W. Wang, “Development and evaluation of alginate-chitosan gastric floating beads loading
with oxymatrine solid dispersion,” Drug Dev Ind Pharm, vol. 42, no. 3, pp. 456–463, Jan. 2016, doi: 10.3109/03639045.2015.1088866.
83. Rosenzweig, E. Lavy, I. Gati, R. Kohen, and M. Friedman, “Development and in vitro characterization of floating sustained-release drug delivery systems of polyphenols,” Drug Deliv, vol. 20, no. 3–4, pp. 180–189, Apr. 2013, doi: 10.3109/10717544.2013.801532.
84. G. B. Celli, A. Ghanem, and M. S. Brooks, “Development and evaluation of floating alginate microspheres for oral delivery of anthocyanins –
A preliminary investigation,” Food Sci Nutr, vol. 5, no. 3, pp. 713–721, May 2017, doi: 10.1002/fsn3.451.
85. G. B. Celli, W. Kalt, and M. S. L. Brooks, “Gastroretentive systems – a proposed strategy to modulate anthocyanin release and absorption for the management of diabetes,” Drug Delivery, vol. 23, no. 6. Taylor and Francis Ltd, pp. 1892–1901, Jul. 23, 2016. doi: 10.3109/10717544.2016.1143058.
86. X. Zhang et al., “Formulation optimization of gastro-Retention tablets of paeonol and efficacy in treatment of experimental Gastric Ulcer,”
Chem Pharm Bull (Tokyo), vol. 65, no. 8, pp. 706–713, 2017, doi: 10.1248/cpb.c16-00993.
87. v. Dangre, P. P. Dusad, A. D. Singh, S. J. Surana, K. K. Chaturvedi, and S. S. Chalikwar, “Fabrication of hesperidin self-microemulsifying nutraceutical delivery system embedded in sodium alginate beads to elicit gastric stability,” Polymer Bulletin, vol. 79, no. 1, pp. 605–626, Jan. 2022, doi: 10.1007/s00289-020-03507-7.
88. N. Kerdsakundee, S. Mahattanadul, and R. Wiwattanapatapee, “Development and evaluation of gastroretentive raft forming systems
incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 94, pp. 513–520, Jul. 2015, doi: 10.1016/j.ejpb.2015.06.024.
89. H. Ge et al., “Fabrication of Ligusticum chuanxiong polylactic acid microspheres: A promising way to enhance the hepatoprotective effect on bioactive ingredients,” Food Chem, vol. 317, Jul. 2020, doi: 10.1016/j.foodchem.2020.126377.
90. G. B. Celli, M. S. L. Brooks, and A. Ghanem, “Development and evaluation of a novel alginatebased in situ gelling system to modulate the
release of anthocyanins,” Food Hydrocoll, vol. 60, pp. 500–508, Oct. 2016, doi: 10.1016/j.foodhyd.2016.04.022.
91. Luo, Q. Yang, X. Lin, C. Qi, and G. Li, “Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres,” Int J Biol Macromol, vol. 125, pp. 721–729, Mar. 2019, doi: 10.1016/j.ijbiomac.2018.12.072.
92. H. Kathpalia, S. Salunkhe, and S. Juvekar, “Formulation of gastroretentive sustained release floating in situ gelling drug delivery system of
solubility enhanced curcumin-soy lecithin complex,” J Drug Deliv Sci Technol, vol. 53, Oct. 2019, doi: 10.1016/j.jddst.2019.101205.
93. J. H. Kim, G. Kismali, and S. C. Gupta, “Natural Products for the Prevention and Treatment of Chronic Inflammatory Diseases: Integrating
Traditional Medicine into Modern Chronic Diseases Care,” Evidence-based Complementary and Alternative Medicine, vol. 2018. Hindawi
Limited, 2018. doi: 10.1155/2018/9837863.
94. Z. H. Zhang, Y. S. Sun, H. Pang, W. L. L. Munyendo, H. X. Lv, and S. L. Zhu, “Preparation and evaluation of berberine alginate beads for
stomach-specific delivery,” Molecules, vol. 16, no. 12, pp. 10347–10356, Dec. 2011, doi: 10.3390/molecules161210347.
95. Zhou et al., “Improved efficacy of Panax notoginseng saponin loaded into BSP/alginate microspheres for the treatment of alcoholic
gastric ulcers,” Int J Pharm, vol. 596, Mar. 2021, doi: 10.1016/j.ijpharm.2021.120218.
96. R. Garg and G. Gupta, “Gastroretentive Floating Microspheres of Silymarin: Preparation and In Vitro Evaluation,” 2010. [Online]. Available:
http://www.tjpr.org
97. S. Bunlung, T. Nualnoi, O. Issarachot, and R. Wiwattanapatapee, “Development of raftforming liquid and chewable tablet formulations
incorporating quercetin solid dispersions for treatment of gastric ulcers,” Saudi Pharmaceutical Journal, vol. 29, no. 10, pp. 1143–
1154, Oct. 2021, doi: 10.1016/j.jsps.2021.08.005.
98. J. Ji et al., “The In vitro/vivo Evaluation of Prepared Gastric Floating Tablets of Berberine Hydrochloride,” AAPS PharmSciTech, vol. 18,
no. 6, pp. 2149–2156, Aug. 2017, doi: 10.1208/s12249-016-0696-7.
99. U. K. Kotreka and M. C. Adeyeye, “Gastroretentive Floating Drug-Delivery Systems: A Critical Review,” 2011. [Online]. Available: www.begellhouse.com
100.Kumar and D. Kaushik, “An Overview on Various Approaches and Recent Patents on Gastroretentive Drug Delivery Systems,” Recent
Pat Drug Deliv Formul, vol. 12, no. 2, pp. 84–92, Mar. 2018, doi: 10.2174/1872211312666180308150218.
101.P. Sharma, M. v. Shah, D. C. Parikh, and T. A. Mehta, “Formulation optimization of gastroretentive drug delivery system for
allopurinol using experimental design,” Expert Opin Drug Deliv, vol. 12, no. 4, pp. 513–524, Apr. 2015, doi: 10.1517/17425247.2014.944861.
102.“Fanda, A.K., Sharma, R., Vivek, K., Khurana, L.K, Ahmad, S., Sing, R.B., Singla, A.K. Pharmaceutical gastroretentive oral dosage form
of nilosinip. US9682081 (2017).”.
103.K. Sadhu et al., “An approaches and patents on controlled release gastroretentive drug delivery system – a review,” International Journal of Pharmaceutical Research, vol. 12, no. 2. Advanced Scientific Research, pp. 2047–2059, Apr. 01, 2020. doi: 10.31838/ijpr/2020.12.02.275.