Investigation in Hydroxyapatite After Cationic Substitution with Neodymium and Magnesium
Main Article Content
Keywords
Substitution; hydroxyapatite; orthopedic; antitumor
Abstract
The development of biomimetic nanomaterials is paying increasing attention to compositional modeling. Hydroxyapatite is among the essential biomaterials for orthopedic and dental applications because the mineral component of bone is chemically similar to hydroxyapatite-based biomaterials. In this study, hydroxyapatite was cationically substituted with neodymium and magnesium via adopting a wet chemical precipitation technique to produce the analogous inorganic phase of bone and make their structure therapeutically fight pathogens. The morphological and compositional characteristics were tested by utilizing FTIR, XRD, and FESEM which revealed the presence of the HA phase with great compositional purity of the produced nanomaterial and obvious change in
crystallinity, lattice properties, morphology, and particle shape. Along with that, the biological tests exhibited improvement in antitumor activity and biocompatibility which were examined with depend on MG63 and WRL68 cell lines, respectively. The presence of neodymium with magnesium in the HA structure makes it has antibacterial and fungicide activity.
References
10.1016/j.progpolymsci.2015.02.004.
2. R. A. Anaee, “Behavior of Ti/HA in Saliva at Different Temperatures as Restorative Materials,” J. Bio- Tribo-Corrosion, vol. 2, no. 2,
pp. 1–9, 2016, doi: 10.1007/s40735-016-0036-1.
3. J. K. Oleiwi, R. A. Anaee, and S. H. Radhi, “CNTS and NHA as reinforcement to improve flexural and impact properties of uhmwpe
nanocomposites for hip joint applications,” Int. J. Mech. Eng. Technol., vol. 9, no. 11, pp. 121–129, 2018.
4. S. Ponnusamy, R. Subramani, S. Elangomannan, K. Louis, M. Periasamy, and G. Dhanaraj, “Novel Strategy for Gallium-Substituted
Hydroxyapatite/Pergularia daemiaFiber Extract/Poly(N-vinylcarbazole) Biocomposite Coating on Titanium for Biomedical Applications,” ACS Omega, vol. 6, no. 35, pp. 22537–22550, 2021, doi: 10.1021/acsomega.1c02186.
5. A. Mocanu et al., “Ion release from hydroxyapatite and substituted hydroxyapatites in different immersion liquids: In vitro experiments
and theoretical modelling study,” R. Soc. Open Sci., vol. 8, no. 1, 2021, doi: 10.1098/rsos.201785.
6. A. Dehghanghadikolaei and B. Fotovvati, “Coating techniques for functional enhancement of metal implants for bone replacement: A
review,” Materials (Basel)., vol. 12, no. 11, 2019, doi: 10.3390/ma12111795.
7. T. Tite et al., “Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro
interrogation methods,” Materials (Basel)., vol. 11, no. 11, pp. 1–62, 2018, doi: 10.3390/ma11112081.
8. A. Mehatlaf, A. Atiyah, and S. Farid, “An Experimental Study of Porous Hydroxyapatite Scaffold Bioactivity in Biomedical
Applications,” Eng. Technol. J., vol. 39, no. 6, pp. 977–985, 2021, doi: 10.30684/etj.v39i6.2059.
9. S. Q. Al-Shahrabalee and H. A. Jaber, “Bioinorganic Preparation of Hydroxyapatite and Rare Earth Substituted Hydroxyapatite for
Biomaterials Applications,” Bioinorg. Chem. Appl., vol. 2023, pp. 1–12, 2023, doi: 10.1155/2023/7856300.
10. S. Panda, C. K. Biswas, and S. Paul, “A comprehensive review on the preparation and application of calcium hydroxyapatite: A special
focus on atomic doping methods for bone tissue engineering,” Ceram. Int., vol. 47, no. 20, pp. 28122–28144, 2021, doi: 10.1016/j.ceramint.2021.07.100.
11. M. Vidotto et al., “A Comparative EPR Study of Non-Substituted and Mg-Substituted Hydroxyapatite Behaviour in Model Media and
during Accelerated Ageing,” Crystals, vol. 12, no. 2, 2022, doi: 10.3390/cryst12020297.
12. S. Q. Al-Shahrabalee and H. A. Jaber, “Investigation of the Nd-Ce-Mg-Zn/Substituted Hydroxyapatite Effect on Biological Properties
and Osteosarcoma Cells,” J. Renew. Mater., vol. 11, no. 3, pp. 1485–1498, 2023, doi: 10.32604/jrm.2023.025011.
13. H. H. Bahjat, R. A. Ismail, G. M. Sulaiman, and M. S. Jabir, “Magnetic Field-Assisted Laser Ablation of Titanium Dioxide Nanoparticles in
Water for Anti-Bacterial Applications,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 9, 2021, doi: 10.1007/s10904-021-01973-8.
14. K. S. Khashan, F. A. Abdulameer, M. S. Jabir, A. A. Hadi, and G. M. Sulaiman, “Anticancer activity and toxicity of carbon nanoparticles
produced by pulsed laser ablation of graphite in water,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 11, no. 3, 2020, doi: 10.1088/2043-
6254/aba1de.
15. K. S. Khashan, B. A. Badr, G. M. Sulaiman, M. S. Jabir, and S. A. Hussain, “Antibacterial activity of Zinc Oxide nanostructured materials synthesis by laser ablation method,” in Journal of Physics: Conference Series, 2021, vol. 1795, no. 1, doi: 10.1088/1742-6596/1795/1/012040.
16. M. A. Jihad, F. T. M. Noori, M. S. Jabir, S. Albukhaty, F. A. Almalki, and A. A. Alyamani, “Polyethylene glycol functionalized graphene
oxide nanoparticles loaded with nigella sativa extract: A smart antibacterial therapeutic drug delivery system,” Molecules, vol. 26, no. 11,
2021, doi: 10.3390/molecules26113067.
17. O. Kaygili et al., “Structural and Dielectrical Properties of Ag- and Ba-Substituted Hydroxyapatites,” J. Inorg. Organomet. Polym.
Mater., vol. 24, no. 6, 2014, doi: 10.1007/s10904-014-0074-4.
18. C. Garbo et al., “Advanced Mg, Zn, Sr, Si multisubstituted hydroxyapatites for bone regeneration,” Int. J. Nanomedicine, vol. 15, pp.
1037–1058, 2020, doi: 10.2147/IJN.S226630.
19. S. Meejoo, W. Maneeprakorn, and P. Winotai, “Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating,” Thermochim. Acta, vol. 447, no. 1, 2006, doi: 10.1016/j.tca.2006.04.013.
20. V. Irudhayam and T. Veerabathiran, “Synthesis and Characterization of PVA Assisted SrHydroxyapatite Using Hydrothermal Coupled
Microemulsion Method,” 2021.
21. Z. Yang, J. Liu, J. Liu, X. Chen, T. Yan, and Q. Chen, “Investigation on physicochemical properties of graphene oxide/nanohydroxyapatite composites and its biomedical applications,” J. Aust. Ceram. Soc., vol. 57, no. 2, 2021, doi: 10.1007/s41779-021-00568-3.
22. M. Andrean et al., “Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying
pH and synthesis time,” Boletín la Soc. Española Cerámica y Vidr., 2020, doi: 10.1016/j.bsecv.2020.06.003.
23. S. Ferraris et al., “Acta Biomaterialia Bioactive materials : In vitro investigation of different mechanisms of hydroxyapatite precipitation,”
Acta Biomater., vol. 102, pp. 468–480, 2020, doi: 10.1016/j.actbio.2019.11.024.
24. F. Bollino, E. Armenia, and E. Tranquillo, “Zirconia/hydroxyapatite composites synthesized via sol-gel: Influence of hydroxyapatite content
and heating on their biological properties,” Materials (Basel)., vol. 10, no. 7, 2017, doi: 10.3390/ma10070757.
25. J. Marchi, P. Greil, J. C. Bressiani, A. Bressiani, and F. Müller, “Influence of synthesis conditions on the characteristics of biphasic calcium
phosphate powders,” Int. J. Appl. Ceram. Technol., vol. 6, no. 1, pp. 60–71, 2009, doi: 10.1111/j.1744-7402.2008.02254.x.
26. A. Destainville, E. Champion, D. BernacheAssollant, and E. Laborde, “Synthesis, characterization and thermal behavior of apatitic
tricalcium phosphate,” Mater. Chem. Phys., vol. 80, no. 1, 2003, doi: 10.1016/S0254-0584(02)00466-2.
27. R. A. Young and D. W. Holcomb, “Role of acid phosphate in hydroxyapatite lattice expansion,” Calcif. Tissue Int., vol. 36, no. 1, 1984, doi:
10.1007/BF02405294.
28. T. Vijayaraghavan, R. Sivasubramanian, S. Hussain, and A. Ashok, “A Facile Synthesis of LaFeO3-Based Perovskites and Their Application towards Sensing of Neurotransmitters,” ChemistrySelect, vol. 2, no. 20, pp. 5570–5577, 2017, doi: 10.1002/slct.201700723.
29. J. K. Odusote, Y. Danyuo, A. D. Baruwa, and A. A. Azeez, “Synthesis and characterization of hydroxyapatite from bovine bone for production
of dental implants,” 2019, doi: 10.1177/2280800019836829.
30. E. Skwarek and D. Sternik, “The influence of the hydroxyapatite synthesis method on the electrochemical , surface and adsorption
properties of hydroxyapatite,” pp. 20–31, 2017, doi: 10.1177/0263617417698966.
31. R. M. Ion et al., “Ion-substituted carbonated hydroxyapatite coatings for model stone samples,” Coatings, vol. 9, no. 4, pp. 1–18, 2019,
doi: 10.3390/coatings9040231.
32. J. F. Cawthray, A. L. Creagh, C. A. Haynes, and C. Orvig, “Ion exchange in hydroxyapatite with lanthanides,” Inorg. Chem., vol. 54, no. 4, pp.
1440–1445, 2015, doi: 10.1021/ic502425e.
33. N. Ekthammathat, A. Phuruangrat, B. Kuntalue, S. Thongtem, and T. Thongtem, “Preparation of neodymium hydroxide nanorods and neodymium oxide nanorods by a hydrothermal method,” Dig. J. Nanomater. Biostructures, vol. 10, no. 2, pp. 715–719, 2015.
34. L. Stipniece, K. Salma-Ancane, D. Jakovlevs, N. Borodajenko, and L. Berzina-Cimdina, “The Study of Magnesium Substitution Effect on
Physicochemical Properties of Hydroxyapatite,” Mater. Sci. Appl. Chem., vol. 28, no. 28, p. 51, 2013, doi: 10.7250/msac.2013.009.
35. D. N. Ungureanu, D. Avram, A. Catangiu, F. V. Anghelina, and V. Despa, “Characterization of calcium phosphate ceramics obtained by
chemical precipitation,” J. Optoelectron. Adv. Mater., vol. 17, no. 7–8, pp. 1225–1230, 2015.
36. A. S. Hammood, “Biomineralization of 2304 duplex stainless steel with surface modification by electrophoretic deposition,” J. Appl. Biomater. Funct. Mater., vol. 18, 2020, doi: 10.1177/2280800019896215.
37. V. Rodríguez-Lugo et al., “Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on
structural and morphological properties,” R. Soc. Open Sci., vol. 5, no. 8, 2018, doi: 10.1098/rsos.180962.
38. A. Costescu et al., “Fabrication, characterization, and antimicrobial activity, evaluation of low silver concentrations in silver-doped
hydroxyapatite nanoparticles,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/194854.
39. D. E. Talburt and G. T. Johnson, “Some Effects of Rare Earth Elements and Yttrium on Microbial Growth,” Mycologia, vol. 59, no. 3, 1967, doi:
10.2307/3756768.
40. K. Demishtein, R. Reifen, and M. Shemesh, “Antimicrobial properties of magnesium open opportunities to develop healthier food,”
Nutrients, vol. 11, no. 10, 2019, doi: 10.3390/nu11102363.
41. D. Predoi, S. L. Iconaru, M. V. Predoi, M. Motelica-Heino, N. Buton, and C. Megier, “Obtaining and characterizing thin layers of magnesium doped hydroxyapatite by dip coating procedure,” Coatings, vol. 10, no. 6, 2020, doi: 10.3390/COATINGS10060510.
42. Y. H. Leung et al., “Mechanisms of antibacterial activity of mgo: Non-ros mediated toxicity of mgo nanoparticles towards escherichia coli,”
Small, vol. 10, no. 6, 2014, doi: 10.1002/smll.201302434.
43. C. A. van Blitterswijk, S. C. Hesseling, J. J. Grote, H. K. Koerten, and K. de Groot, “The biocompatibility of hydroxyapatite ceramic: A
study of retrieved human middle ear implants,” J. Biomed. Mater. Res., vol. 24, no. 4, 1990, doi: 10.1002/jbm.820240403.
44. L. Stipniece, K. Salma-Ancane, N. Borodajenko, M. Sokolova, D. Jakovlevs, and L. BerzinaCimdina, “Characterization of Mg-substituted
hydroxyapatite synthesized by wet chemical method,” Ceram. Int., vol. 40, no. 2, 2014, doi: 10.1016/j.ceramint.2013.09.110.
45. “Landi, E., Logroscino, G., Proietti, L., Tampieri, A., Sandri, M., & Sprio, S. (2008). Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. Journal of Materials Science: Materials in Medicine, 19(1), 239-247.