New methods for craniofacial bone reconstruction: review
Main Article Content
Keywords
Bone regeneration; tissue engineering; craniofacial reconstruction
Abstract
Foundation and Objective: The craniofacial structures are mind-boggling and stylishly the main part of appearance. The objective of the review is to highlight the advances in bone remaking and its likely use in craniofacial skeletal imperfections. Progresses in uniting and tissue move strategies have worked on the careful results however our capacity to completely recover the lost or flawed tissue is
restricted.
Methods: A point-by-point information-based search utilizing google researcher was performed searching for articles in English with the hunt including the accompanying terms: bone recovery, tissue designing, craniofacial recreation, platforms, and osteoinductive development factors. The inquiry was enhanced by checking references of applicable audit articles.
Key Content and Findings: Currently, research and clinical ways to accomplish craniofacial bone recovery are endeavoring to move to new methods to avoid serious medical procedures. Presently, no strategy has been demonstrated to satisfy all qualities expected to supplant autologous uniting as the new best quality level.
Conclusions: Currently the highest quality level for craniofacial bone recovery is as yet autologous uniting, yet the obtrusiveness and careful morbidities included have incited exploration to investigate further choices. The fuse of personal computer (PC) helped plans have progressed the capacity to imitate the setups, morphologic attributes, and mechanical capacity of the local site.
References
orbital floor fractures. Ophthalmology.2006;113(10):1863-8.
2. Klein M, Glatzer C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor.
Plastic and reconstructive surgery.2006;117(2):565-70.
3. Hoffmann J, Cornelius CP, Groten M, Pröbster L, Pfannenberg C, Schwenzer N. Orbital reconstruction with individually copy-milled
ceramic implants. Plastic and reconstructive surgery. 1998;101(3):604-12.
4. Elgalal MT, Kozakiewicz M, Loba P, Walkowiak B, Olszycki M, Stefańczyk L. Patient specific implants, designed using Rapid Prototyping and
diagnostic imaging, for the repair of orbital fractures. Medical Science Monitor. 2010;16(1):75-9.
5. Neumann A, Kevenhoerster K. Biomaterials for craniofacial reconstruction. GMS current topics in otorhinolaryngology, head and neck surgery. 2009;8.
6. Pan H, Zhang Z, Tang W, Li Z, Deng Y. Bioresorbable material in secondary orbital reconstruction surgery. Journal of Ophthalmology. 2019;2019.
7. Ye L-X, Sun X-M, Zhang Y-G, Zhang Y.Materials to facilitate orbital reconstruction and soft tissue filling in posttraumatic orbital deformaties. Plastic and Aesthetic Research. 2016;3:86-91.
8. Ellis E, Messo E. Use of nonresorbable alloplastic implants for internal orbital reconstruction. Journal of oral and maxillofacial surgery.
2004;62(7):873-81.
9. Kim KT, Eo MY, Nguyen TTH, Kim SM. General review of titanium toxicity. International journal of implant dentistry. 2019;5(1):1-12.
10. Dorri M, Nasser M, Oliver R. Resorbable versus titanium plates for facial fractures. Cochrane Database of Systematic Reviews. 2009(1).
11. On S-W, Cho S-W, Byun S-H, Yang B-E. Bioabsorbable osteofixation materials for maxillofacial bone surgery: a review on polymers
and magnesium-based materials. Biomedicines.2020;8(9):300.
12. Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles–a
systematic analytical review. Acta biomaterialia.2014;10(6):2379-403.
13. Marchetti C, Bianchi A, Mazzoni S, Cipriani R,Campobassi A. Oromandibular reconstruction using a fibula osteocutaneous free flap: four
different “preplating” techniques. Plastic and reconstructive surgery. 2006;118(3):643-51.
14. Du R, Su Y-X, Yan Y, Choi WS, Yang W-F, Zhang C, et al. A systematic approach for making 3D-printed patient-specific implants for
craniomaxillofacial reconstruction. Engineering.2020;6(11):1291-301.
15. Martola M, Lindqvist C, Hänninen H, Al‐Sukhun J. Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery.Journal of Biomedical Materials Research Part B:Applied Biomaterials: An Official Journal of TheSociety for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society forBiomaterials. 2007;80(2):345-52.
16. Wang Y-T, Huang S-F, Fang Y-T, Huang S-C, Cheng H-F, Chen C-H, et al. Anatomical thin titanium mesh plate structural optimization for
zygomatic-maxillary complex fracture under fatigue testing. BioMed Research International. 2018;2018.
17. Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. Journal of dentistry.
2007;35(11):819-26.
18. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25.
19. Ellis III E, Tan Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh. Journal of oral and maxillofacial surgery. 2003;61(4):442-53.
20. Dougherty WR, Wellisz T. The natural history of alloplastic implants in orbital floor reconstruction: an animal model. The Journal of
Craniofacial Surgery. 1994;5(1):26-32; discussion 3.
21. Schumann P, Lindhorst D, Wagner ME, Schramm A, Gellrich N-C, Rücker M. Perspectives on resorbable osteosynthesis
materials in craniomaxillofacial surgery. Pathobiology. 2013;80(4):211-7.
22. Young SM, Sundar G, Lim T-C, Lang SS, Thomas G, Amrith S. Use of bioresorbable implants for orbital fracture reconstruction.
British Journal of Ophthalmology. 2017;101(8):1080-5.
23. Lee DJ, Kwon J, Kim Y-I, Kwon YH, Min S, Shin HW. Coating Medpor® Implant with TissueEngineered Elastic Cartilage. Journal of
Functional Biomaterials. 2020;11(2):34.
24. Hwang SM, Park SH, Lee JS, Do Kim H, Hwang MK, Kim MW. Improvement of Infraorbital Rim contour Using Medpor. Archives of Craniofacial Surgery. 2016;17(2):77.
25. Lin I-C, Liao S-L, Lin LL. Porous polyethylene implants in orbital floor reconstruction. Journal of the Formosan Medical Association.
2007;106(1):51-7.
26. Boyette JR, Pemberton JD, Bonilla-Velez J. Management of orbital fractures: challenges and solutions. Clinical Ophthalmology (Auckland,
NZ). 2015;9:2127.
27. Garibaldi DC, Iliff NT, Grant MP, Merbs SL. Use of porous polyethylene with embedded titanium in orbital reconstruction: a review of 106 patients. Ophthalmic Plastic & Reconstructive Surgery.2007;23(6):439-44.
28. Lieger O, Richards R, Liu M, Lloyd T. Computerassisted design and manufacture of implants in the late reconstruction of extensive orbital
fractures. Archives of facial plastic surgery.2010;12(3):186-91.
29. Zhang W-B, Mao C, Liu X-J, Guo C-B, Yu G-Y, Peng X. Outcomes of orbital floor reconstruction after extensive maxillectomy using the computerassisted fabricated individual titanium mesh technique. Journal of Oral and Maxillofacial Surgery. 2015;73(10):2065. e1-. e15.
30. Oh TS, Jeong WS, Chang TJ, Koh KS, Choi J-W. Customized orbital wall reconstruction using three-dimensionally printed rapid prototype
model in patients with orbital wall fracture. Journal of Craniofacial Surgery. 2016;27(8):2020-4.
31. Raisian S, Fallahi HR, Khiabani KS, Heidarizadeh M, Azdoo S. Customized titanium mesh based on the 3D printed model vs. manual
intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial. Reviews on recent
clinical trials. 2017;12(3):154-8.
32. Stoor P, Suomalainen A, Lindqvist C, Mesimäki K, Danielsson D, Westermark A, et al. Rapid prototyped patient specific implants for
reconstruction of orbital wall defects. Journal of Cranio-Maxillofacial Surgery. 2014;42(8):1644-9.
33. Mommaerts MY, Büttner M, Vercruysse Jr H, Wauters L, Beerens M. Orbital wall reconstruction with two-piece puzzle 3D printed
implants. Craniomaxillofacial Trauma & Reconstruction. 2016;9(1):055-61.
34. Rotaru H, Stan H, Florian IS, Schumacher R, Park Y-T, Kim S-G, et al. Cranioplasty with custommade implants: analyzing the cases of 10 patients.Journal of Oral and Maxillofacial Surgery.2012;70(2):e169-e76.
35. Wilde F, Kasper R, Sakkas A, Pietzka S, Winter K, Schramm A, et al. Biomechanical in-vitro study concerning the stability of customized
CAD/CAM mandibular reconstruction plates.Comparison of additively and subtractively manufactured as well as hand-bended plates.
International Journal of Oral and Maxillofacial Surgery. 2019;48:150-1.
36. Strong EB, Fuller SC, Wiley DF, Zumbansen J, Wilson M, Metzger MC. Preformed vs intraoperative bending of titanium mesh for
orbital reconstruction. Otolaryngology--Head and Neck Surgery. 2013;149(1):60-6.
37. Smeets M, Snel R, Sun Y, Dormaar T, Politis C. Late reconstruction of extensive orbital floor fracture with a patient-specific implant in a
bombing victim. Journal of the Korean Association of Oral and Maxillofacial Surgeons. 2020;46(5):353-7.
38. Zimmerer RM, Ellis III E, Aniceto GS, Schramm A, Wagner ME, Grant MP, et al. A prospective multicenter study to compare the precision of
posttraumatic internal orbital reconstruction with standard preformed and individualized orbital implants. Journal of Cranio-Maxillofacial
Surgery. 2016;44(9):1485-97.39. Fan B, Chen H, Sun Y-J, Wang B-F, Che L, Liu S-Y, et al. Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures. Graefe's Archive for Clinical and Experimental Ophthalmology. 2017;255(10):2051-7.
40. Goranova KL, Kattenhøj Sloth Overgaard AK, Gitsov I. Hydroxyapatite-poly (D, L-lactide) nanografts. Synthesis and characterization as
bone cement additives. Molecules. 2021;26(2):424.
41. Gradinaru S, Popescu LM, Piticescu RM, Zurac S, Ciuluvica R, Burlacu A, et al. Repair of the orbital wall fractures in rabbit animal model using nanostructured hydroxyapatite-based implant. Nanomaterials. 2016;6(1):11.
42. Archer E, Torretti M, Madbouly S.Biodegradable polycaprolactone (PCL) based polymer and composites. Physical Sciences
Reviews. 2021.
43. Teo L, Teoh SH, Liu Y, Lim L, Tan B, Schantz JT, et al. A novel bioresorbable implant for repair of orbital floor fractures. Orbit. 2015;34(4):192-
200.
44. Lee HBH, Nunery WR. Orbital adherence syndrome secondary to titanium implant material. Ophthalmic Plastic & Reconstructive Surgery.
2009;25(1):33-6.
45. Anderson JM, Rodriguez A, Chang DT, editors. Foreign body reaction to biomaterials. Seminars in immunology; 2008: Elsevier.
46. Prasad K, Bazaka O, Chua M, Rochford M,Fedrick L, Spoor J, et al. Metallic biomaterials: Current challenges and opportunities. Materials.
2017;10(8):884.
47. Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing.
Acta biomaterialia. 2018;66:6-22.
48. Bonda DJ, Manjila S, Selman WR, Dean D. The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions. Neurosurgery. 2015;77(5):814-24.
49. Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, Dorafshar AH, et al. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Annals of biomedical engineering. 2017;45(1):45-57.
50. Verret D, Ducic Y, Oxford L, Smith J. Hydroxyapatite cement in craniofacial reconstruction. Otolaryngology—Head and Neck Surgery. 2005;133(6):897-9.
51. Popescu L, Piticescu R, Antonelli A, Rusti C, Carboni E, Sfara C, et al. Recent advances in synthesis, characterization of
hydroxyapatite/polyurethane composites and study of their biocompatible properties. Journal of Materials Science: Materials in Medicine.
2013;24(11):2491-503.
52. Matic DB, Manson PN. Biomechanical analysis of hydroxyapatite cement cranioplasty. Journal of Craniofacial Surgery. 2004;15(3):415-22.
53. Vasile VA, Istrate S, Iancu RC, Piticescu RM, Cursaru LM, Schmetterer L, et al. Biocompatible Materials for Orbital Wall Reconstruction—An
Overview. Materials. 2022;15(6):2183.
54. Zemba M, Stamate A-C, Tataru CP, Branisteanu DC, Balta F. Conjunctival flap surgery in the management of ocular surface disease.
Experimental and Therapeutic Medicine. 2020;20(4):3412-6.