The Effect of Capsulorhexis Size On Changes In The Anterior Chamber Depth And Iridocorneal Angle In Post Phacoemulsification Patient With Intraocular Lens Implantation
Main Article Content
Keywords
Public Service Innovations, Services, Community, GOMT Application
Abstract
Introduction: In several studies stated that cataract surgery is the most common surgical procedure performed in daily medical practice throughout the world. The success of cataract surgery is greatly influenced by several factors including continuous curvilinear capsulorhexis. From the existing literature to date, not much has been studied about the effect of capsular hexis size on components of the anterior segment of the eyeball such as BMD and iridocorneal angle in patients who have undergone phacoemulsification surgery, for this reason researchers are interested in researching it.
Methodology: This study was conducted on 88 patients with aged related cataracts who underwent phacoemulsification surgery with intraocular lens implantation using consecutive sampling. Divided into two groups with small and large capsulorhexis sizes. Changes in anterior chamber depth and iridocorneal angle before and after surgery were compared between groups.
Results: In the comparison of the two groups there was a significant difference in the average anterior chamber depth between before and after surgery with p <0.001, but the results of comparison of anterior chamber depth between groups did not obtain significant results with p = 0.573 (p > 0, 05). For the iridiocorneal angle, there were also significant differences on the nasal and temporal sides
before and after with p <0.05, but the comparison between groups of small rhexis diameter and large changes in the iridocorneal angle was not significant with p>0.05.
Conclusion: Phacoemulsification surgery with a large rhexis diameter resulted in a shallower chamber depth and narrower iridocorneal angle when compared to patients with a smaller rhexis diameter although it was not statistically significant
References
surgery in Open angle glaucoma (AOD 500). Yonsei Medical Journal, 58(2), p.432.
2. Zuo, C. et al., 2020. Effect of phacoemulsification on anterior chamber angle in eyes with medically uncontrolled filtered primary angle-closure glaucoma. Journal of Ophthalmology, 2020, pp.1–6.
3. Uçakhan, Ö.Ö., Özkan, M. & Kanpolat, A., 2009. Anterior chamber parameters measured by the Pentacam CES after uneventful
phacoemulsification in Normotensive Eyes. Acta Ophthalmologica, 87(5), pp.544–548.
4. Doganay, S. et al., 2008. Evaluation of anterior segment parameter changes using the Pentacam after uneventful phacoemulsification. ActaOphthalmologica, 88(5), pp.601–606.
5. Bang, S.P. & Jun, J.H., 2019. Comparison of postoperative axial stability of intraocular lens and capsulotomy parameters between precision
pulse capsulotomy and continuous curvilinear capsulotomy. Medicine, 98(48).
6. Zeng, Y. & Gao, J.-hua, 2015. Continuous curvilinear capsulorhexis in cataract surgery using a modified 3-bend cystotome. Journal of
Ophthalmology, 2015, pp.1–5.
7. Kim, JS., Shyn, KH. 2001. Biometry of 3 types of intraocular lenses using Scheimpflug photography. J CATARACT REFRACT SURG—VOL 27.
8. Matthias, G., Findl, O., Menapace, R., Kriechbaum, K., Koeppl, C., Buehl, W., Drexler, W. 2004. Effect of haptic design on change in
axial lens position after cataract surgery. J Cataract Refract Surg 2004; 30:45–51
9. Ning, X., Yang, Y., Zhang., 2019. BMC Opthalmology. Anterior chamber depth-a predictor of refractive outcomes after age related
cataract surgery.
10. Lee, W. et al., 2017. Correlations between preoperative angle parameters and postoperative unpredicted refractive errors after cataract
surgery in Open angle glaucoma (AOD 500). Yonsei Medical Journal, 58(2), p.432.
11. Salsabila, C., Nasrul, M., Geriputri, I N. (2021) Prevalensi dan Karakteristik Pasien Katarak Senilis di RSUD Provisnis Nusa Tenggara Barat
pada Periode Januari-Juni 2019. Journal Kedokteran Unram, 2021, 10(3):509-514
12. Hugosson, M., & Ekström, C. (2020). Prevalence and risk factors for age-related cataract in Sweden. Upsala Journal of Medical Sciences,
125(4), 311–315. https://doi.org/10.1080/03009734.2020.1802375
13. Thanigasalam, T., Reddy, S., & Zaki, R. (2015). Factors associated with complications and postoperative visual outcomes of cataract
surgery; A study of 1,632 cases. Journal of Ophthalmic and Vision Research, 10(4), 375–384. https://doi.org/10.4103/2008-322X.158892
14. Song, E., Sun, H., Xu, Y., Ma, Y., Zhu, H., & Wei Pan, C. (2014). Age-Related cataract, cataract surgery and subsequent mortality: A systematic
review and Meta-Analysis. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0112054
15. Lou, L., Ye, X., Xu, P., Wang, J., Xu, Y., Jin, K., & Ye, J. (2018). Association of sex with the global burden of cataract. JAMA Ophthalmology,
136(2), 116–121. https://doi.org/10.1001/jamaophthalmol.2017.5668
16. Mahayana, I. T., Setyowati, R., Winarti, T., & Prawiroranu, S. (2018). Outcomes of manual Small Incision Cataract Surgery (mSICS)
compared with phacoemulsification from population based outreach eye camp, in Yogyakarta and Southern Central Java Region, Indonesia. Journal of Community Empowerment for Health, 1(1), 6–10. https://doi.org/10.22146/jcoemph.36867
17. Huang, G., Gonzalez, E., Peng, P.-H., Lee, R., Leeungurasatien, T., He, M., Porco, T., & Lin, S. C. (2011). Anterior chamber depth, iridocorneal
angle width, and intraocular pressure changes after phacoemulsification: Narrow vs open iridocorneal angles (Archives of Ophthalmology
(2011) 129, 10, (1283-1290)). Archives of Ophthalmology, 129(11), 1497. https://doi.org/10.1001/archophthalmol.2011.350
18. Altan, C. et al., 2004. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after uneventful phacoemulsification in eyes without glaucoma and with open iridocorneal angles. Journal of Cataract and Refractive Surgery, 30(4), pp.832–838.
19. Ning, X., Yang, Y., Zhang., 2019. BMC Opthalmology. Anterior chamber depth-a predictor of refractive outcomes after age related cataract surgery.
20. Fallah, MR., Beiki, H., Mohammadi SF., Latifi, G., Ashrafi, E., Fallah Tafti ], Z,. Anterior chamber depth change following cataract surgery
in Pseudoexfoliation syndrome; a preliminary study. J Ophthalmic Vis Res. 2017;12(2):165–9.
21. Muzyka-Wozniak, M., Ogar, A,. Anterior chamber depth and iris and lens position before and after phacoemulsification in eyes with a short
or long axial length. J Cataract Refract Surg. 2016;42(4):563–8.
22. Hussein, M. A., Salamah, M. A., Shawky, M. M., & Solaiman, K. A.-M. (2019). Changes in Anterior Chamber Depth and Angle Before and
After Phacoemulsification of Intumescent Cataract. Zagazig University Medical Journal, 0(0), 0–0.
https://doi.org/10.21608/zumj.2019.15051.1360
23. Rüfer, F., Schorder, A., Klettner, A., FrimpongBoateng, A., Roider, J., Erb, C. 2010. Anterior chamber depth and iridocorneal angle in healthy
White subjects: effects of age, gender and refraction. Department of Ophthalmology University of SchleswigHolstein. https://doi.org/10.1111/j.1755-3768.2009.01588.x
24. Melancia, D., Abegão Pinto, L. & MarquesNeves, C., 2015. Cataract surgery and intraocular pressure. Ophthalmic Research, 53(3), pp.141–
148.
25. Vu, A. T., Bui, V. A., Vu, H. L., Quyet, D., Van Thai, T., Nga, V. T., Dinh, T. C., & Bac, N. D. (2019). Evaluation of anterior chamber depth and
anterior chamber angle changing after phacoemulsification in the primary angle closesuspect eyes. Open Access Macedonian Journal
of Medical Sciences, 7(24), 4297–4300. https://doi.org/10.3889/oamjms.2019.378
26. Aykan, Ü. et al., 2003. The effect of capsulorhexis size on development of posterior capsule opacification: Small (4.5 to 5.0 mm)
versus large (6.0 to 7.0 mm). European Journal of Ophthalmology, 13(6), pp.541–545.
27. Langwińska-Wośko, E., Broniek-Kowalik, K., & Szulborski, K. (2011). The impact of capsulorhexis diameter, localization and shape on
posterior capsule opacifcation. In Medical Science Monitor (Vol. 17, Nomor 10). https://doi.org/10.12659/MSM.881984
28. Çekiç, O. & Batman, C., 1999. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surgery, Lasers and Imaging Retina, 30(3), pp.185–190.
29. Joshi, R. S., & Muley, S. J. (2017). Combined 30-degree bevel up and down technique against 0-degree phaco tip for phacoemulsification surgery of hard cataracts. Clinical Ophthalmology, 11, 1073–1079. https://doi.org/10.2147/OPTH.S131921
30. Iwase, T., Tanaka, N., & Sugiyama, K. (2008). Postoperative refraction changes in phacoemulsification cataract surgery with
implantation of different types of intraocular lens. European Journal of Ophthalmology, 18(3), 371–376. https://doi.org/10.1177/112067210801800310
31. Joshi, R. S., & Muley, S. J. (2017). Combined 30-degree bevel up and down technique against 0-degree phaco tip for phacoemulsification surgery of hard cataracts. Clinical Ophthalmology, 11, 1073–1079. https://doi.org/10.2147/OPTH.S131921