Prolidase Specificity as a diagnostic marker for breast cancer
Main Article Content
Keywords
Prolidase, Glutathione, Catalase, ceruloplasmin, Malondialdehyde
Abstract
The study was carried out to evaluate the activity of prolidase-PD (as a diagnostic marker) and some antioxidant parameters in sera of patients with breast cancer. Ninety serum samples were collected from women(60 samples from women with breast cancer-BC and 30 samples from healthy women as a control group) with ages ranging between 30-71 years. The samples were divided into three groups:
Control group C, First group G1 for the newly diagnosed cases with BC, and Second group-G2 for breast cancer after undergoing chemotherapy. The study includes the determination activity of serum enzymes ( PD and catalase-CAT) and the concentration of glutathione-GSH, ceruloplasmin-Crp, and Malondialdehyde-MDA. The results of the present study indicate that the activity of PD, CAT, Crp, and also GSH and MDA significantly elevated (P≤0.05) in the sera of the patients' group(G1 and G2) as compared with the control group. Otherwise, the sensitivity rate for PD,MDA and Crp were 88.89%, 100% and 89.86% respectively in the group newly diagnosed with BC. While in the group after treatment the higher sensitivity rate were shown to MDA with 100% as an indicator for the treatment response and outstanding value for MDA (AUC=1.0) in the patients' groups Vs control. From all the results we can conclude that the high level of prolidase activity was associated with an increased risk of breast cancer, especially with high oxidative stress.
References
reports, review of the literature, and clinical observation. Clinical breast cancer, 19(2), e271-e275.
2. Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers, 13(17), 4287.
3. Smolarz, B., Nowak, A. Z., & Romanowicz, H. (2022). Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment
(Review of Literature). Cancers, 14(10), 2569.
4. McGuire, A., Brown, J. A., Malone, C., McLaughlin, R., & Kerin, M. J. (2015). Effects of Age on the Detection and Management of Breast
Cancer. Cancers, 7, 908-929.
5. Wu, H. C., Do, C., Andrulis, I. L., John, E. M., Daly, M. B., Buys, S. S., ... & Terry, M. B. (2018). Breast cancer family history and allelespecific DNA methylation in the legacy girls study. Epigenetics, 13(3), 240-250.
6. Shahbandi, A., Nguyen, H. D., & Jackson, J. G. (2020). TP53 mutations and outcomes in breast cancer: reading beyond the headlines. Trends in cancer, 6(2), 98-110.
7. Husby, A., Wohlfahrt, J., Øyen, N., & Melbye, M. (2018). Pregnancy duration and breast cancer risk. Nature communications, 9(1), 4255.
8. Kim, E. Y., Chang, Y., Ahn, J., Yun, J. S., Park, Y. L., Park, C. H., ... & Ryu, S. (2020). Mammographic breast density, its changes, and
breast cancer risk in premenopausal and postmenopausal women. Cancer, 126(21), 4687-4696.
9. Schacht, D. V., Yamaguchi, K., Lai, J., Kulkarni, K., Sennett, C. A., & Abe, H. (2014). Importance of a personal history of breast cancer as a risk
factor for the development of subsequent breast cancer: results from screening breast MRI. American Journal of Roentgenology, 202(2), 289-292.
10. Mouabbi, J. A., Hassan, A., Lim, B., Hortobagyi, G. N., Tripathy, D., & Layman, R. M. (2022). Invasive lobular carcinoma: an understudied
emergent subtype of breast cancer. Breast Cancer Research and Treatment, 193(2), 253-264.
11. Khamparia, A., Bharati, S., Podder, P., Gupta, D., Khanna, A., Phung, T. K., & Thanh, D. N. (2021). Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimensional systems and signal processing, 32, 747-765.
12. Afzal, S., Hassan, M., Ullah, S., Abbas, H., Tawakkal, F., & Khan, M. A. (2022). Breast cancer; discovery of novel diagnostic biomarkers,
drug resistance, and therapeutic implications. Frontiers in molecular biosciences, 9.
13. Wang, C. Q., Tang, C. H., Chang, H. T., Li, X. N., Zhao, Y. M., Su, C. M., ... & Huang, B. F. (2016). Fascin‐1 as a novel diagnostic marker of
triple‐negative breast cancer. Cancer medicine, 5(8), 1983-1988.
14. Ahmed, M., & Aslam, M. (2020). Serum MACC1: A new biomarker for breast cancer. Oncotarget, 11(48), 4521.
15. El-Soud, M. R. A., & Hewala, T. I. M. (2019). The clinical significance of serum oxidative stress biomarkers in breast cancer females. Med Res. J, 4, 1-7.
16. Carey, D. J. (1991). Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annual review of
physiology, 53(1), 161-177.
17. Ruoslahti, E. (1992). Control of cell motility and tumour invasion by extracellular matrix interactions. British journal of cancer, 66(2), 239-
242.
18. Cechowska‐Pasko, M., Pałka, J., & Wojtukiewicz, M. Z. (2006). Enhanced prolidase activity and decreased collagen content in breast
cancer tissue. International journal of experimental pathology, 87(4), 289-296.
19. Ruoslahti, E. (1992). Control of cell motility and tumour invasion by extracellular matrix interactions. British journal of cancer, 66(2), 239-
242.
20. Birkedal-Hansen, H. W. G. I., Moore, W. G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., & Engler, J. A. (1993). Matrix
metalloproteinases: a review. Critical Reviews in Oral Biology & Medicine, 4(2), 197-250.
21. Behrendtsen, O., & Werb, Z. (1997). Metalloproteinases regulate parietal endoderm differentiating and migrating in cultured mouse
embryos. Developmental dynamics: an official publication of the American Association of Anatomists, 208(2), 255-265..
22. Eni-Aganga, I., Lanaghan, Z. M., Balasubramaniam, M., Dash, C., & Pandhare, J. (2021). PROLIDASE: A Review from Discovery to its Role in Health and Disease. Frontiers in Molecular Biosciences, 8, 723003.24-Abi,H.(1974). Method of enzymatic analysis. New York Academic press ,2:674-684.
23. Seadlak, J., & Lindsay, R. H. (1968). Analytical Biochemistry. 192, Cited by Al-Zamyle, OM, AlNimer MS, Al-Muslih RK (2001). Detection the
levelof peroxynitrite and related with antioxidant satus in the serum of patients with acute myocardial ifraction. Nation. J. Chem, 4, 625-637.
24. El-Missiry, M. A., Fayed, T. A., El-Sawy, M. R., & El-Sayed, A. A. (2007). Ameliorative effect of melatonin against gamma-irradiation-induced
oxidative stress and tissue injury. Ecotoxicology and environmental safety, 66(2), 278-286.
25. Sunderman Jr, F. W., & Nomoto, S. (1970). Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clinical
chemistry, 16(11), 903-910.
26. Duffy, M. J. (1999). CA 15-3 and related mucins as circulating markers in breast cancer. Annals of clinical biochemistry, 36(5), 579-586.
27. Chen, Y., et al., Prolidase Activity Is Associated With Breast Cancer Risk Among Postmenopausal Women: A Case-Control Study. Cancer
Research, 2019. 79(15): p. 3976-3983.
28. Zareba, I., Huynh, T. Y. L., Kazberuk, A., Teul, J., Klupczynska, A., Matysiak, J., ... & Palka, J. (2020). Overexpression of prolidase induces
autophagic death in MCF-7 breast cancer cells. Cell Physiol. Biochem, 54, 875-887.
29. Abusoglu, S., Eryavuz, D., Bal, C., Nural, C., Ozcan, E., Yildirimel, M., ... & Unlu, A. (2019). Assessment of serum ischemia-modified albumin, prolidase and thiol-disulphide levels in subjects with breast cancer. Revista Romana de Medicina de Laborator, 27(1), 25-33.
30. Hameed, M. G. S. and Al-Samarrai, R. R. H.Evaluation he prolidase activity and oxidative stress in sera ofpatients with prostatic diseases.
Neuroquantology 2022;20(8):
31. Camuzcuoglu, H., Arioz, D. T., Toy, H., Kurt, S., Celik, H., & Aksoy, N. (2009). Assessment of preoperative serum prolidase activity in epithelial
ovarian cancer. European Journal of Obstetrics & Gynecology and Reproductive Biology, 147(1), 97-100.
32. Halliwell, B., Aeschbach, R., Löliger, J., & Aruoma, O. I. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601-617.
33. Fuchs-Tarlovsky, V. (2013). Role of antioxidants in cancer therapy. Nutrition, 29(1), 15-21.
34. Glasauer, A., & Chandel, N. S. (2014). Targeting antioxidants for cancer therapy. Biochemical pharmacology, 92(1), 90-101.
35. Kadam, C. Y., & Abhang, S. A. (2013). Evaluation of serum levels of reduced glutathione, glutathione-s-transferase and nitric oxide in breast cancer patients undergoing adjuvant chemotherapy. International Journal of Current Research and Review, 5(13), 51
36. Bjørklund, G., Crisponi, G., Nurchi, V. M., Cappai, R., Buha Djordjevic, A., & Aaseth, J. (2019). A review on coordination properties of
thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules, 24(18), 3247..
37. Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxidative
medicine and cellular longevity, 2019.
38. Abdul-Barry, J., Al-Naama, L. M., Al-Manaseer, Z. A., Al-Khayat, H. S., & Hospetal, B. G. (2009). Serum Ceruloplasmin, Copper, Zinc and Copper Zinc Ratio Levels in Different Types of Malignancy. Medical Journal of Babylon, 6(2), 377-391.
39. Linder, M. C., Moor, J. R., & Wright, K. (1981). Ceruloplasmin assays in diagnosis and treatment of human lung, breast, and gastrointestinal
cancers. Journal of the National Cancer Institute, 67(2), 263-275.
40. Ozyilkan, O., Baltali, E., Ozyilkan, E., Tekuzman, G., Kars, A., & Firat, D. (1992). Ceruloplasmin level in women with breast disease. Preliminary results. Acta oncologica (Stockholm, Sweden), 31(8), 843-846.
41. Al-Mayali, H. M., & Kadhem, W. M. (2021). Evaluation of some antioxidants and malondialdehyde (MDA) in Iraqi women infected
with breast cancer and toxoplasmosis in AlDiwaniyah and Al-Najaf provinces. Materials Today: Proceedings.
42. Arslan, M., Demir, H., Arslan, H., Gokalp, A. S., & Demir, C. (2011). Trace elements, heavy metals and other biochemical parameters in malignant glioma patients. Asian Pac J Cancer Prev, 12(2), 447-51.