Clinical Performance of Ceramic Laminate Veneers Made with Celtra Press and IPS E. Max Press Ceramic (Randomized Controlled Clinical Trial)
Main Article Content
Keywords
color matching and stability; fracture; sensitivity; marginal adaptation; patient satisfaction; split-mouth
Abstract
Objective: To assess the clinical performance (color matching and stability, fracture, marginal adaptation, patient satisfaction, and sensitivity) of laminate veneers constructed from Celtra press ceramic and IPS e.max press ceramic with incisal wrap design (split-mouth design).
Methodology: Thirty-four ceramic laminate veneers were fabricated for maxillary anterior teeth in six patients. The veneers were randomly divided into two groups based on their material. Group I (the control group) was constructed from IPS e.max press veneers, and Group II (the intervention group) was constructed from Celtra press veneers. The follow-up sessions were performed after 24 hours of cementation (the baseline), then every three months for up to a year for each patient, using a dental probe and operator vision to assess color matching, fracture, and sensitivity in accordance with USPHS criteria. A spectrophotometer (Vita EasyShade®V) was also used to assess the color stability of the restoration. Patients’ satisfaction was also evaluated using a questionnaire chart.
Results: An insignificant difference in both groups was revealed, considering color matching, color stability, fractures, marginal adaptation, and sensitivity at all follow-up intervals. While patients' satisfaction results showed a statistically significant difference in some evaluated factors, there wasn’t a clinically significant difference.
Conclusion: After one year of follow-up, both Celtra press laminate veneers and IPS e.max press laminate veneers showed successful clinical performance in anterior teeth requiring conservative labial laminate veneers with incisal wrap design in terms of color matching and color stability, fracture, marginal adaptation, sensitivity, and patient satisfaction.
References
studies: A systematic review,” J. Clin. Med., vol. 10, no. 5, pp. 1–14, 2021, doi: 10.3390/jcm10051074.
2. L. Porojan, R. D. Vasiliu, M. I. Bîrdeanu, and S. D. Porojan, “Surface characterization and optical properties of reinforced dental glass-ceramics related to artificial aging,” Molecules, vol. 25, no. 15, 2020, doi: 10.3390/molecules25153407.
3. R. L. Sakaguchi and J. M. Powers, Craig ’s Restorative Dental Materials Thirteenth Edition. 2012.
4. A. S. Alayad, “Ceramic Fracture in Bilayered Allceramic Indirect Restoration: A Review of the Literature,” J. Adv. Oral Res., vol. 10, no. 1, pp. 5–12, 2019, doi: 10.1177/2320206819831560.
5. A. G. Türk, M. Sabuncu, S. Ünal, B. Önal, and M. Ulusoy, “Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography,” J. Appl. Oral Sci., vol. 24, no. 4, pp. 383–390, 2016, doi: 10.1590/1678-775720160012.
6. E. Dolev, Y. Bitterman, and A. Meirowitz, “Comparison of marginal fit between CAD-CAM and hot-press lithium disilicate crowns,” J.
Prosthet. Dent., vol. 121, no. 1, pp. 124–128, 2019, doi: 10.1016/j.prosdent.2018.03.035.
7. C. Van Den Breemer, M. Gresnigt, M. Özcan, W. Kerdijk, and M. Cune, “Prospective randomized clinical trial on the survival of lithium disilicate posterior partial crowns bonded using immediate or delayed dentin sealing: Short-term results on tooth sensitivity and patient satisfaction,” Oper. Dent., vol. 44, no. 5, pp. E212–E222, 2019, doi: 10.2341/18-047-C.
8. A. Qanungo, M. A. Aras, V. Chitre, A. Mysore, B. Amin, and S. R. Daswani, “Immediate dentin sealing for indirect bonded restorations,” J. Prosthodont. Res., vol. 60, no. 4, pp. 240–249, 2016, doi: 10.1016/j.jpor.2016.04.001.
9. R. L. Balkaran, T. Osoba, and R. Rafeek, “A crosssectional study of patients’ satisfaction with dental care facilities: A survey of adult treatment at the University of the West Indies, School of Dentistry,” West Indian Med. J., vol. 63, no. 5, pp. 490–498, 2014, doi: 10.7727/wimj.2013.197.
10. M. A. Aldosari, M. A. Tavares, A. T. G. MattaMachado, and M. H. N. G. Abreu, “Factors associated with patients’ satisfaction in Brazilian
dental primary health care,” PLoS One, vol. 12, no. 11, pp. 1–13, 2017, doi: 10.1371/journal.pone.0187993.
11. M. M. Gresnigt, W. Kalk, and M. Ozcan, “Randomized clinical trial of indirect resin composite and ceramic veneers: up to 3-year
follow-up.,” J. Adhes. Dent., vol. 15, no. 2, pp. 181–90, 2013, doi: 10.3290/j.jad.a28883.
12. P. S. Fleming, C. D. Lynch, and N. Pandis, “Randomized controlled trials in dentistry: Common pitfalls and how to avoid them,” J. Dent.,
vol. 42, no. 8, pp. 908–914, 2014, doi: 10.1016/j.jdent.2014.06.004.
13. H. Zhu, S. Zhang, and C. Ahn, “Sample size considerations for split-mouth design,” Stat. Methods Med. Res., vol. 26, no. 6, pp. 2543–2551,
2017, doi: 10.1177/0962280215601137.
14. C. Igiel, M. Weyhrauch, S. Wentaschek, H. Scheller, and K. M. Lehmann, “Dental color matching: A comparison between visual and
instrumental methods,” Dent. Mater. J., vol. 35, no. 1, pp. 63–69, 2016, doi: 10.4012/dmj.2015-006.
15. Z. Jafri, N. Ahmad, M. Sawai, N. Sultan, and A. Bhardwaj, “Digital Smile Design-An innovative tool in aesthetic dentistry,” J. Oral Biol.
Craniofacial Res., vol. 10, no. 2, pp. 194–198, 2020, doi: 10.1016/j.jobcr.2020.04.010.
16. M. Hoorizad, S. Valizadeh, H. Heshmat, S. F. Tabatabaei, and T. Shakeri, “ Influence of resin cement on color stability of ceramic veneers:
in vitro study ,” Biomater. Investig. Dent., vol. 8, no. 1, pp. 11–17, 2021, doi: 10.1080/26415275.2020.1855077.
17. N. Anwar, “Factors In uencing Patients ’ Satisfaction with Anterior Teeth Restorations in Ha ’ il City , Kingdom of Saudi Arabia,” pp. 394–
400, 2018.
18. D. M. Barnes, L. W. Blank, J. C. Gingell, and M. A. Latta, “Clinical Evaluation of Castable Ceramic Veneers,” J. Esthet. Restor. Dent., vol. 4, pp. 21–26, 1992, doi: 10.1111/j.1708-8240.1992.tb00713.x.
19. P. W. Kihn and D. M. Barnes, “The clinical longevity of porcelain veneers: A 48-month clinical evaluation,” J. Am. Dent. Assoc., vol. 129,
no. 6, pp. 747–752, 1998, doi: 10.14219/jada.archive.1998.0317.
20. M. Peumans, B. Van Meerbeek, P. Lambrechts, and G. Vanherle, “The 5-year clinical performance of direct composite additions to correct tooth form and position. I. Esthetic qualities.,” Clin. Oral Investig., vol. 1, no. 1, pp. 12–18, 1997, doi: 10.1007/s007840050003.
21. B. Korkut and C. Türkmen, “Longevity of direct diastema closure and recontouring restorations with resin composites in maxillary anterior teeth: A 4-year clinical evaluation,” J. Esthet. Restor. Dent., vol. 33, no. 4, pp. 590–604, 2021, doi: 10.1111/jerd.12697.
22. N. Mf, N. Z. Nr, S. B. A. Sba, M. S. Mn, I. Mf, and Y. Ma, “A Comparison of Tooth Shade Selection between use of Visual Approach, Digital
Cameras and Smartphone Cameras,” J. Int. Dent. Med. Res., vol. 14, no. 1, pp. 99–104, 2021.
23. E. Palla, E. Kontonasaki, and N. Kantiranis, “Color stability of lithium disilicate ceramics after aging and immersion in common beverages,” J. Prosthet. Dent., pp. 1–11, doi: 10.1016/j.prosdent.2017.04.031.
24. J. F. Pissaia, B. K. de Almeida Guanaes, C. C. de Almeida Kintopp, G. M. Correr, L. F. da Cunha, and C. C. Gonzaga, “Color stability of ceramic
veneers as a function of resin cement curing mode and shade: 3-year follow-up,” PLoS One, vol. 14, no. 7, pp. 1–9, 2019, doi: 10.1371/journal.pone.0219183.
25. B. P. Gugelmin, L. C. M. Miguel, F. B. Filho, L. F. da Cunha, G. M. Correr, and C. C. Gonzaga, “Colorstability of ceramic veneers luted with resin cements and pre-heated composites: 12 months follow-up,” Braz. Dent. J., vol. 31, no. 1, pp. 69–77, 2020, doi: 10.1590/0103-6440202002842.
26. M. Hayashi, N. H. F. Wilson, S. Ebisu, and D. C. Watts, “Influence of explorer tip diameter in identifying restoration margin discrepancies,” J. Dent., vol. 33, no. 8, pp. 669–674, 2005, doi: 10.1016/j.jdent.2005.01.006.
27. A. F. Boeckler, A. Stadler, and J. M. Setz, “The significance of marginal gap and overextensionmeasurement in the evaluation of the fit of
complete crowns,” J. Contemp. Dent. Pract., vol. 6, no. 4, pp. 26–37, 2005, doi: 10.5005/jcdp-6-4-26.
28. F. Alzeghaibi, A. Jammah, F. Alghanim, K. Albawardi, and L. Alkadi, “The relationship between patient’s participation in shade selection
and their satisfaction with their dental prostheses,” Clin. Exp. Dent. Res., vol. 8, no. 1, pp. 270–274, 2022, doi: 10.1002/cre2.508.
29. C. R. G. Van Den Breemer, M. M. M. Gresnigt, and M. S. Cune, “Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review,”
Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/148954.
30. J. F. Fondriest, “The Optical Characteristics of Natural Teeth,” Insid. Esthet., vol. 8, no. 11, pp. 2–5, 2012, [Online]. Available: www.dentalaegis.com/id.
31. A. Czigola, E. Abram, Z. I. Kovacs, K. Marton, P. Hermann, and J. Borbely, “Effects of substrate, ceramic thickness, translucency, and cement shade on the color of CAD/CAM lithium-disilicate crowns,” J. Esthet. Restor. Dent., vol. 31, no. 5, pp. 457–464, 2019, doi: 10.1111/jerd.12470.
32. F. Nejatidanesh, K. Azadbakht, O. Savabi, M. Sharifi, and M. Shirani, “Effect of repeated firing on the translucency of CAD-CAM monolithic
glass-ceramics,” J. Prosthet. Dent., vol. 123, no. 3, pp. 530.e1-530.e6, 2020, doi: 10.1016/j.prosdent.2019.10.028.
33. M. Mohamed and M. Gomaa, “Effect of surface finishing protocols on color and translucency of zirconia reinforced lithium silicate glass-ceramic after thermo-mechanical aging and different staining solutions,” Egypt. Dent. J., vol. 66, no. 4, pp. 2491–2502, 2020, doi:
10.21608/edj.2020.34025.1162.
34. S. Abou-Steit, J. ElGuindy, and A. Zaki, “Evaluation of patient satisfaction and shade matching of vita suprinity versus lithium disilicate
(E-max) ceramic crowns in the esthetic zone: A randomized controlled clinical trial [version 1; peer review: Awaiting peer review],” F1000Research, vol. 8, pp. 1–14, 2019, doi: 10.12688/F1000RESEARCH.18337.1.
35. M. Bekhiet, maha taymour, and M. zamzam, “CLINICAL EVALUATION AND PATIENT SATISFACTION OF SHADE MATCHING BETWEEN NATURAL TEETH AND MONOLITHIC ALL-CERAMIC CROWNS FABRICATED FROM TWO MATERIALS (Randomized Controlled Clinical Trial),” Egypt. Dent. J., vol. 67, no. 3, pp. 2231–2238, 2021, doi: 10.21608/edj.2021.62512.1495.
36. R. D. Paravina et al., “Color difference thresholds in dentistry,” J. Esthet. Restor. Dent., vol. 27, no. S1, pp. S1–S9, 2015, doi: 10.1111/jerd.12149.
37. R. D. Paravina, M. M. Pérez, and R. Ghinea, “Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and
research applications,” J. Esthet. Restor. Dent., vol. 31, no. 2, pp. 103–112, 2019, doi:
10.1111/jerd.12465.
38. A. M. E. Marchionatti, V. F. Wandscher, M. M. May, M. A. Bottino, and L. G. May, “Color stability of ceramic laminate veneers cemented
with light-polymerizing and dual-polymerizing luting agent: A split-mouth randomized clinical trial,” J. Prosthet. Dent., vol. 118, no. 5, pp. 604–
610, 2017, doi: 10.1016/j.prosdent.2016.11.013.
39. M. Elkomy, J. El-guindy, and M. Taymour, “Color stability of emax CAD laminate Veneers cemented with light cure versus dual cure amine free adhesive resin cement (Randomized Controlled Clinical Trial),” Egypt. Dent. J., vol. 65, no. 2, pp. 1469–1475, 2019, doi: 10.21608/edj.2019.72571.
40. M. M ElGendi, K. Rabie, and A. A Zaki, “Oneyear clinical evaluation of e.max CAD and LavaTM ultimate laminate veneers with butt joint
preparation (Randomized controlled clinical trial),” Med. Res. Innov., vol. 3, no. 2, pp. 1–6, 2019, doi: 10.15761/mri.1000160.
41. Z. Saeed, A. L. Sayed, M. Al, O. S. El, and D. El Mahallawi, “Clinical Evaluation of Fracture and Color Changes of All Ceramic Laminate Veneers Prepared With Modified Gull Wing versus Conventional Technique ( Randomized Controlled Clinical Trial ),” vol. 25, no. 6, pp. 16230–16249, 2021.
42. O. M. W. El-Mesallamy, H. I. M. El-Banna, M. L. Zamzam, J. F. El-Guindy, and A. S. Idris, “Patient satisfaction and clinical evaluation of IPS empress CAD versus ZLS ceramic laminate veneers: A randomized controlled clinical trial,” World J. Dent., vol. 12, no. 3, pp. 183–188, 2021, doi:
10.5005/jp-journals-10015-1813.
43. M. M. Gresnigt, W. Kalk, and M. Ozcan, “Randomized clinical trial of indirect resin composite and ceramic veneers: up to 3-year
follow-up,” J. Adhes. Dent., vol. 15, no. 2, pp. 181–90, 2013, doi: 10.3290/j.jad.a28883.
44. M. Yuce, M. Ulusoy, and A. G. Turk, “Comparison of Marginal and Internal Adaptation of Heat-Pressed and CAD/CAM Porcelain
Laminate Veneers and a 2-Year Follow-Up,” J. Prosthodont., vol. 28, no. 5, pp. 504–510, 2019, doi: 10.1111/jopr.12669.
45. H. I. M. El-Banna, M. L. Zamzam, J. F. ElGuindy, and A. S. Idris, “One-yearevaluation of IPS empress CAD versus polished celtra duo ceramic laminate veneers (Randomized controlled clinical trial),” Brazilian Dent. Sci., vol. 24, no. 3, 2021, doi: 10.14295/bds.2021.v24i3.2595.
46. M. N. Aboushelib, W. A. Elmahy, and M. H. Ghazy, “Internal adaptation, marginal accuracy and microleakage of a pressable versus a
machinable ceramic laminate veneers,” J. Dent., vol. 40, no. 8, pp. 670–677, 2012, doi: 10.1016/j.jdent.2012.04.019.
47. B. Azar, S. Eckert, J. Kunkela, T. Ingr, and R. Mounajjed, “The marginal fit of lithium disilicate crowns: Press vs. CAD/CAM,” Braz. Oral Res.,
vol. 32, pp. 1–7, 2018, doi: 10.1590/1807-3107/2018.vol32.0001.
48. Z. N. Al-Dwairi, R. M. Alkhatatbeh, N. Z. Baba, and C. J. Goodacre, “A comparison of the marginal and internal fit of porcelain laminate
veneers fabricated by pressing and CAD-CAM milling and cemented with 2 different resin cements,” J. Prosthet. Dent., vol. 121, no. 3, pp.
470–476, 2019, doi: 10.1016/j.prosdent.2018.04.008.
49. I. Soares-Rusu et al., “Clinical Evaluation of Lithium Disilicate Veneers Manufactured by CAD/CAM Compared with Heat-pressed Methods: Randomized Controlled Clinical Trial,” Oper. Dent., vol. 46, pp. 4–14, Mar. 2021, doi: 10.2341/19-233-C.
50. Y. U. Aslan, A. Uludamar, and Y. Özkan, “Clinical performance of pressable glass-ceramic veneers after 5, 10, 15, and 20 years: A
retrospective case series study,” J. Esthet. Restor. Dent., vol. 31, no. 5, pp. 415–422, 2019, doi: 10.1111/jerd.12496.
51. Faisal, H. T. ., Abid, M. K. ., & Abed, A. . (2022). Study Of Some Biochemical Parameters in Dose During Pregnancy in Goats. Journal Of Advanced Zoology, 43(1), 01–06. https://doi.org/10.17762/jaz.v43i1.109
52. Gulati, H. ., & Rana, S. . (2022). Habitat Preference and Current Threats to The Sarus Cranes Grus Antigone (Aves: Gruiformes:
Gruidae) In Important Bird Areas of Haryana, India: Implications for Determining Effective Conservation Actions. Journal Of Advanced
Zoology, 43(1), 07–16. Retrieved from http://jazindia.com/index.php/jaz/article/view/110
53. Mokhtar, A. R. R. A. S. . (2022). Development Of Saponin Based Wettable Powder Formulation from Phaleria macrocarpa To Control Pomacea maculate. Journal Of Advanced Zoology, 43(1), 17–31. Retrieved from http://jazindia.com/index.php/jaz/article/view/111