Interior Design Aspects Affecting Infection Rate: A Systematic Review of Possible Interventions

Main Article Content

Yaman Sokienah

Keywords

COVID-19, Infection Transmission, Built Environment, Interior Design.

Abstract

In light of the COVID-19 pandemic, getting infected through the built environment is being studied. The measures that should be taken to reduce infection through the built environment are essential; not only for COVID-19, but this idea is present at all times of widespread diseases. The purpose of this research is to systematically review the relationship between the built environment and the spread of infection to create a potential guideline to reduce the transmission rate. Articles and studies on the relationship between infectious disease and the built environment were reviewed. Articles matching the selection criteria were identified. Most articles described peer reviews, consensus statements, and reports. The articles have provided data that can be used as guidance for reducing the transmission of infection within the built environment. It was found that evidence has been created such as ventilation, buffer spaces, flooring, and surfaces that can reduce the infection of COVID-19.

Abstract 211 | pdf Downloads 190

References

1. Aliabadi, A. A., Rogak, S. N., Bartlett, K. H., & Green, S. I. (2011). Preventing Airborne Disease Transmission: Review of Methods for Ventilation Design in Health Care Facilities. Advances in Preventive Medicine, 2011, 1–21. https://doi.org/10.4061/2011/124064
2. Andersen, B. M., Rasch, M., Kvist, J., Tollefsen, T., Lukkassen, R., Sandvik, L., & Welo, A. (2009). Floor cleaning: effect on bacteria and organic materials in hospital rooms. Journal of Hospital Infection, 71(1), 57–65. https://doi.org/10.1016/j.jhin.2008.09.014
3. Ayliffe, G. A. J., Collins, B. J., Lowbury, E. J. L., Babb, J. R., & Lilly, H. A. (1967). Ward floors and other surfaces as reservoirs of hospital
infection. Journal of Hygiene, 65(4), 515–536. https://doi.org/10.1017/S0022172400046052
4. Bahl, P., Doolan, C., de Silva, C., Chughtai, A. A., Bourouiba, L., & MacIntyre, C. R. (2020). Airborne or Droplet Precautions for Health Workers Treating Coronavirus Disease 2019? The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiaa189
5. Bartley, J. M. (2000). APIC State-of-the-Art Report: The role of infection control during construction in health care facilities. American Journal of Infection Control, 28(2), 156–169. https://doi.org/10.1067/mic.2000.106055
6. Chen, J., & Poon, C. sun. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and
Environment, 44(9), 1899–1906. https://doi.org/10.1016/j.buildenv.2009.01.002
7. Ching, W.-H., Leung, M. K. H., Leung, D. Y. C., Li, Y., & Yuen, P. L. (2008). Reducing Risk of Airborne Transmitted Infection in Hospitals by Use of Hospital Curtains. Indoor and Built Environment, 17(3), 252–259. https://doi.org/10.1177/1420326X08091957
8. Chung, C.-J., Lin, H.-I., Tsou, H.-K., Shi, Z.-Y., & He, J.-L. (2008). An antimicrobial TiO2 coating for reducing hospital-acquired infection.
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B(1), 220–224. https://doi.org/10.1002/jbm.b.30939
9. Codinhoto, R., Tzortzopoulos, P., Kagioglou, M., Aouad, G., & Cooper, R. (2009). The impacts of the built environment on health outcomes. Facilities, 27(3–4), 138–151. https://doi.org/10.1108/02632770910933152
10. Coronavirus Disease 2019 (COVID-19) | CDC. (n.d.). Retrieved May 3, 2020, from https://www.cdc.gov/coronavirus/2019-ncov/index.html
11. Curtis, L. T. (2008). Prevention of hospitalacquired infections: review of nonpharmacological interventions. In Journal of Hospital Infection (Vol. 69, Issue 3, pp. 204–219). Elsevier. https://doi.org/10.1016/j.jhin.2008.03.018
12. Dancer, S. J. (1999). Mopping up hospital infection. In Journal of Hospital Infection (Vol. 43, Issue 2, pp. 85–100). W.B. Saunders Ltd.
https://doi.org/10.1053/jhin.1999.0616
13. Dettenkofer, M., Seegers, S., Antes, G., Motschall, E., Schumacher, M., & Daschner, F. D. (2004). Does the Architecture of Hospital Facilities Influence Nosocomial Infection Rates? A Systematic Review. Infection Control & Hospital Epidemiology, 25(1), 21–25. https://doi.org/10.1086/502286
14. Harris, R. P., Helfand, M., Woolf, S. H., Lohr, K. N., Mulrow, C. D., Teutsch, S. M., & Atkins, D. (2001). Current methods of the U.S. preventive services task force: A review of the process. American Journal of Preventive Medicine, 20(3 SUPPL.), 21–35. https://doi.org/10.1016/S0749-3797(01)00261-6
15. Herwaldt, L. A., Smith, S. D., & Carter, C. D. (1998). Infection control in the outpatient settingTitle. Infection Control & Hospital Epidemiology, 19(1), 41–74.
16. Huisman, E. R. C. M., Morales, E., van Hoof, J., & Kort, H. S. M. (2012). Healing environment: A review of the impact of physical environmental factors on users. Building and Environment, 58, 70–80. https://doi.org/10.1016/j.buildenv.2012.06.016
17. Hyttinen, M., Rautio, A., Pasanen, P., Reponen, T., Earnest, G. S., Streifel, A., & Kalliokoski, P. (2011a). Airborne Infection Isolation Rooms – A Review of Experimental Studies. Indoor and Built Environment, 20(6), 584–594. https://doi.org/10.1177/1420326X11409452
18. Hyttinen, M., Rautio, A., Pasanen, P., Reponen, T., Earnest, G. S., Streifel, A., & Kalliokoski, P. (2011b). Airborne Infection Isolation Rooms – A Review of Experimental Studies. Indoor and Built Environment, 20(6), 584–594. https://doi.org/10.1177/1420326X11409452
19. Joseph, A., Henriksen, K., & Malone, E. (2018). The architecture of safety: An emerging priority for improving patient safety. Health Affairs, 37(11), 1884–1891. https://doi.org/10.1377/hlthaff.2018.0643
20. Kembel, S. W., Meadow, J. F., O’Connor, T. K., Mhuireach, G., Northcutt, D., Kline, J., Moriyama, M., Brown, G. Z., Bohannan, B. J. M., & Green, J. L. (2014). Architectural Design Drives the Biogeography of Indoor BacterialCommunities. PLoS ONE, 9(1), e87093. https://doi.org/10.1371/journal.pone.0087093
21. Lax, S., Nagler, C. R., & Gilbert, J. A. (2015). Our interface with the built environment: Immunity and the indoor microbiota. In Trends in Immunology (Vol. 36, Issue 3, pp. 121–123). Elsevier Ltd. https://doi.org/10.1016/j.it.2015.01.001
22. Lenfestey, N. F., Denham, M. E., Hall, K. K., & Kamerow, D. B. (2013). Expert Opinions on the Role of Facility Design in the Acquisition and Prevention of Healthcare-Associated Infections. HERD: Health Environments Research & Design Journal, 7(1_suppl), 31–45.
https://doi.org/10.1177/193758671300701S05
23. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. v., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water
disinfection and microbial control: Potential applications and implications. In Water Research (Vol. 42, Issue 18, pp. 4591–4602). Elsevier Ltd. https://doi.org/10.1016/j.watres.2008.08.015
24. Lindsay, S. W. , Wilson, A. , Golding, N. , Scott, T. W. , & &Takken, W. (2017). Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bulletin of the World Health Organization, 95(8), 607–608. https://doi.org/10.2471/BLT.16.189688
25. Noble, A. (2004). The architecture of infection control. British Journal of Infection Control, 5(4), 26–29. https://doi.org/10.1177/14690446040050040601
26. Noskin, G. A., Bednarz, P., Suriano, T., Reiner, S., & Peterson, L. R. (2000). Persistent contamination of fabric-covered furniture by
vancomycin-resistant enterococci: Implications for upholstery selection in hospitals. American Journal of Infection Control, 28(4), 311–313. https://doi.org/10.1067/mic.2000.108129
27. Noskin, G. A., & Peterson, L. R. (2001). Engineering infection control through facility design. Emerging Infectious Diseases, 7(2), 354–
357. https://doi.org/10.3201/eid0702.010242
28. Page, K., Wilson, M., & Parkin, I. P. (2009). Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry, 19(23), 3818–3831. https://doi.org/10.1039/b818698g
29. Ranney, M. L., Griffeth, V., & Jha, A. K. (2020). Critical supply shortages - The need for ventilators and personal protective equipment
during the Covid-19 pandemic. In New England Journal of Medicine (Vol. 382, Issue 18, p. E41). Massachussetts Medical Society.
https://doi.org/10.1056/NEJMp2006141
30. Schaal, K. P. (1991). Medical and microbiological problems arising from airborne infection in hospitals. Journal of Hospital Infection, 18(SUPPL. A), 451–459. https://doi.org/10.1016/0195-6701(91)90056-E
31. Sommerstein, R., Jenni, H., Carrel, T., & Marschall, J. (2016). Cardiac surgery, nosocomial infection, and the built environment. In Journal of Hospital Infection (Vol. 93, Issue 3, pp. 240–241). W.B. Saunders Ltd. https://doi.org/10.1016/j.jhin.2016.03.026
32. Stockwell, R. E., Ballard, E. L., O’Rourke, P., Knibbs, L. D., Morawska, L., & Bell, S. C. (2019). Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. In Journal of Hospital Infection (Vol. 103, Issue 2, pp. 175–184). W.B. Saunders Ltd.
https://doi.org/10.1016/j.jhin.2019.06.016
33. Sun, D., Babar Shahzad, M., Li, M., Wang, G., & Xu, D. (2015). Antimicrobial materials with medical applications. Materials Technology, 30(sup6), B90–B95. https://doi.org/10.1179/1753555714Y.0000000239
34. Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. In Journal of Hospital Infection (Vol. 64, Issue 2, pp. 100–114). Elsevier. https://doi.org/10.1016/j.jhin.2006.05.022
35. Walker, J. T., Hoffman, P., Bennett, A. M., Vos, M. C., Thomas, M., & Tomlinson, N. (2007). Hospital and community acquired infection and the built environment - design and testing of infection control rooms. Journal of Hospital Infection, 65(SUPPL. 2), 43–49. https://doi.org/10.1016/S0195-6701(07)60014-0
36. Wang;, Z. H. Z. (2012). Symbol: Antibacterial properties and mechanism of nano-zinc oxide. Journal of Clinical Rehabilitative Tissue
Engineering Research, 16(3), 527–530. https://doi.org/10.3969/J.ISSN.1673-8225.2012.03.033
37. Weinstein, R. A., & Hota, B. (2004). Contamination, Disinfection, and CrossColonization: Are Hospital Surfaces Reservoirs for Nosocomial Infection? Clinical Infectious Diseases, 39(8), 1182–1189. https://doi.org/10.1086/424667
38. Wyszogrodzka, G., Marszałek, B., Gil, B., & Dorozyński, P. (2016). Metal-organic frameworks: Mechanisms of antibacterial action
and potential applications. In Drug Discovery Today (Vol. 21, Issue 6, pp. 1009–1018). Elsevier Ltd. https://doi.org/10.1016/j.drudis.2016.04.009
39. Xu, C., & Liu, L. (2018). Personalized ventilation: One possible solution for airborne infection control in highly occupied space? Indoor and Built Environment, 27(7), 873–876. https://doi.org/10.1177/1420326X18777383