Study of the enzymatic antioxidants and trace elements level in the people infected by leishmaniasis

Main Article Content

Ohood Mozahim Shakir
Wasan Abdulmunem Taha
Sura Samir Muhammad

Keywords

leishmaniasis, Antioxidants, Trace elements

Abstract

Leishmaniasis is a protozoa parasite, unicellular, obligatory intracellular parasitism, bi-host; it has two phases in his life cycle the first phase it called Promastigote that live in the intestines of female sandflies belonging to genus. The second stage Amastigote grows and multiplies inside the macrophages of the vertebral storage host. The purpose of this study was to evaluate the effect of L. tropica on the antioxidants indicators and trace elements level. The current study included the collection of 55 serum samples from patients infected by the parasite L. tropica. The results showed a decrease(p < 0.05) in the concentration of glutathione, the level of zinc and iron, while it was noted that the concentration of peroxynitrite radical and the level of magnesium increased (p < 0.05) in patients by leishmaniasis compared to the control. The information gathered can be used to lessen the effect of L. tropica on human, by treating patients with cutting-edge methods.

Abstract 173 | pdf Downloads 141

References

1. R. Arenas, E. Torres-Guerrero, M. R. QuintanillaCedillo, and J. Ruiz-Esmenjaud, “Leishmaniasis: A review,” F1000Research, vol. 6, no. May, pp.1–15, 2017, doi: 10.12688/f1000research.11120.1.
2. P. Cecílio, A. Cordeiro-da-Silva, and F. Oliveira, “Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites,” Commun. Biol., vol. 5, no. 1, 2022, doi: 10.1038/s42003-022-03240-z.
3. E. Bifeld and J. Clos, “The genetics of Leishmania virulence,” Med. Microbiol. Immunol., vol. 204, no. 6, pp. 619–634, 2015,
doi: 10.1007/s00430-015-0422-1.
4. World Health Organization, “Leishmaniasis,” vol. 4, pp. 9–15, 2017. 5. F. Chappuis, S. Rijal, A. Soto, J. Menten, and M. Boelaert, “A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis,” Br. Med. J., vol. 333, no. 7571, pp. 723–726, 2006, doi: 10.1136/bmj.38917.503056.7C.
6. J. Alvar et al., “Leishmaniasis worldwide and global estimates of its incidence,” PLoS One, vol.7, no. 5, 2012, doi:
10.1371/journal.pone.0035671.
7. E. C. Wall, J. Watson, M. Armstrong, P. L. Chiodini, and D. N. Lockwood, “Short report: Epidemiology of imported cutaneous leishmaniasis at the hospital for tropical diseases, London, United Kingdom: Use of polymerase chain reaction to identify the species,” Am. J. Trop. Med. Hyg., vol. 86, no. 1, pp. 115–118, 2012, doi: 10.4269/ajtmh.2012.10-0558.
8. K. Aoun and A. Bouratbine, “Cutaneous leishmaniasis in North Africa: A review,”Parasite, vol. 21, no. 14, 2014, doi:10.1051/parasite/2014014.
9. K. González et al., “Histopathological characteristics of cutaneous lesions caused by Leishmania Viannia panamensis in Panama,”
Rev. Inst. Med. Trop. Sao Paulo, vol. 60, no. 8, pp. 1–9, 2018, doi: 10.1590/s1678-9946201860008.
10. M. Karamian, K. Kuhls, M. Hemmati, and M. A. Ghatee, “Phylogenetic structure of Leishmania tropica in the new endemic focus Birjand in East Iran in comparison to other Iranian endemic regions,” Acta Trop., vol. 158, pp. 68–76, 2016, doi: 10.1016/j.actatropica.2016.02.010.
11. L. Zhuang, J. Su, and P. Tu, “Cutaneous leishmaniasis presenting with painless ulcer on the right forearm: A case report,” World J. Clin. Cases, vol. 10, no. 7, pp. 2301–2306, 2022, doi:10.12998/WJCC.V10.I7.2301.
12. N. Aara et al., “Clinco-epidemiologic study of cutaneous leishmaniasis in bikaner, Rajasthan, India,” Am. J. Trop. Med. Hyg., vol. 89, no. 1, pp.111–115, 2013, doi: 10.4269/ajtmh.12-0558.
13. S. Sakhaei, R. Darrudi, H. Motaarefi, and H. E.Sadagheyani, “Epidemiological study of cutaneous leishmaniasis in Neyshabur county,
East of Iran (2011-2017),” Open Access Maced.J. Med. Sci., vol. 7, no. 21, pp. 3710–3715, 2019, doi: 10.3889/oamjms.2019.421.
14. D. S. Qurtas, “Cutaneous Leishmaniasis in Erbil Governorate: Clinical manifestations and disease course,” Med. J. Islam. Repub. Iran, vol. 32, no.1, pp. 411–413, 2018, doi:10.14196/MJIRI.32.71.
15. S. van Henten et al., “Cutaneous Leishmaniasis Due to Leishmania aethiopica,”EClinicalMedicine, vol. 6, pp. 69–81, 2018, doi:
10.1016/j.eclinm.2018.12.009.
16. H. Zangger et al., “Leishmania aethiopica Field Isolates Bearing an Endosymbiontic dsRNA Virus Induce Pro-inflammatory Cytokine
Response,” PLoS Negl. Trop. Dis., vol. 8, no. 4,pp. 1–10, 2014, doi:10.1371/journal.pntd.0002836.
17. C. M. Jones and S. C. Welburn, “Leishmaniasis Beyond East Africa,” Front. Vet. Sci., vol. 8, no. 618766, pp. 1–10, 2021, doi:
10.3389/fvets.2021.618766.
18. L. Mengeot, J. C. Yombi, and M. Baeck, “Cutaneous leishmaniasis due to Leishmania aethiopica: A therapeutic challenge,” JAAD Case
Reports, vol. 20, pp. 72–75, 2022, doi:10.1016/j.jdcr.2021.12.028.
19. S. Shirian, A. Oryan, G. R. Hatam, and Y. Daneshbod, “Mixed mucosal leishmaniasis infection caused by Leishmania tropica and
leishmania major,” J. Clin. Microbiol., vol. 50, no. 11, pp. 3805–3808, 2012, doi:10.1128/JCM.01469-12.
20. G. Baneth et al., “Leishmania major infection in a dog with cutaneous manifestations,” Parasites and Vectors, vol. 9, no. 1, pp. 1–5, 2016, doi:10.1186/s13071-016-1541-2.
21. M. M. Alcover, M. C. Riera, and R. Fisa,“Leishmaniosis in Rodents Caused by Leishmania infantum: A Review of Studies in the Mediterranean Area,” Front. Vet. Sci., vol. 8,2021, doi: 10.3389/fvets.2021.702687.
22. A. Bilgic-Temel, D. F. Murrell, and S. Uzun,“Cutaneous leishmaniasis: A neglected disfiguring disease for women,” Int. J. Women’s
Dermatology, vol. 5, no. 3, pp. 158–165, 2019,doi: 10.1016/j.ijwd.2019.01.002.
23. G. Volpedo, T. Pacheco-Fernandez, E. A.Holcomb, N. Cipriano, B. Cox, and A. R.Satoskar, “Mechanisms of Immunopathogenesis
in Cutaneous Leishmaniasis And Post Kala-azar Dermal Leishmaniasis (PKDL),” Front. Cell. Infect. Microbiol., vol. 11, no. 685296, pp. 1–16, 2021, doi: 10.3389/fcimb.2021.685296.
24. C. Cantacessi, F. Dantas-Torres, M. J. Nolan, and D. Otranto, “The past, present, and future of Leishmania genomics and transcriptomics,” Trends Parasitol., vol. 31, no. 3, pp. 100–108,2015, doi: 10.1016/j.pt.2014.12.012.
25. E. S. Yamamoto et al., “The effect of ursolic acid on leishmania (Leishmania) amazonensis is related to programed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis,” PLoS One, vol. 10, no. 12, pp. 1– 19, 2015, doi: 10.1371/journal.pone.0144946.
26. J. Sunter and K. Gull, “Shape, form, function and Leishmania pathogenicity: From textbook descriptions to biological understanding,” Open Biol., vol. 7, no. 9, 2017, doi:10.1098/rsob.170165.
27. S. Moitra, S. Basu, M. Pawlowic, F. F. Hsu, and K. Zhang, “De Novo Synthesis of Phosphatidylcholine Is Essential for the
Promastigote But Not Amastigote Stage in Leishmania major,” Front. Cell. Infect. Microbiol., vol. 11, pp. 1–16, 2021, doi:
10.3389/fcimb.2021.647870.
28. F. Rahman et al., “Virtual screening of natural compounds for potential inhibitors of Sterol C-24 methyltransferase of Leishmania donovani to overcome leishmaniasis,” J. Cell. Biochem., vol.122, no. 9, pp. 1216–1228, 2021, doi: 10.1002/jcb.29944.
29. M. A. Mandell, W. L. Beatty, and S. M. Beverley, “Quantitative single-cell analysis of Leishmania major amastigote differentiation demonstrates variably extended expression of the lipophosphoglycan ( LPG ) virulence factor in different host cell types,” 2022.
30. A. H. Zahirnia et al., “Predominance of Leishmania major and rare occurrence of Leishmania tropica with haplotype variability at
the center of Iran,” Brazilian J. Infect. Dis., vol. 22, no. 4, pp. 278–287, 2018, doi:10.1016/j.bjid.2018.07.005.
31. P. E. Kima, “The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist,” Int. J. Parasitol.,vol. 37, no. 10, pp. 1087–1096, 2007, doi:10.1016/j.ijpara.2007.04.007.
32. Q. Jamal, A. Shah, S. B. Rasheed, and M. Adnan,“In vitro Assessment and Characterization of the Growth and Life Cycle of Leishmania tropica,”Pakistan J. Zool, pp. 1–9, 2020.
33. K. Kohl et al., “Importance of polyphosphate in the Leishmania life cycle,” Microb. Cell, vol. 5, no. 8, pp. 371–384, 2018, doi:
10.15698/mic2018.08.642.
34. S. Leta, T. H. T. Dao, F. Mesele, and G.Alemayehu, “Visceral Leishmaniasis in Ethiopia:An Evolving Disease,” PLoS Negl. Trop. Dis.,
vol. 8, no. 9, pp. 1–8, 2014, doi:10.1371/journal.pntd.0003131.
35. J. Prakash et al., “Episomal expression of human glutathione reductase (HuGR) in Leishmania sheds light on evolutionary pressure for unique redox metabolism pathway: Impaired stress tolerance ability of Leishmania donovani,” Int. J.Biol. Macromol., vol. 121, no. 18, pp. 498–507, 2019, doi: 10.1016/j.ijbiomac.2018.10.036.
36. N. Amiri-Dashatan, M. Koushki, M. RezaeiTavirani, and N. Ahmadi, “Stage-Specific Differential Gene Expression of Glutathione
Peroxidase in Leishmania Major and Leishmania Tropica,” Reports Biochem. Mol. Biol., vol. 9, no. 3, pp. 324–330, 2020, doi:
10.29252/RBMB.9.3.324.
37. R. Hadighi, M. Mohebali, P. Boucher, H. Hajjaran, A. Khamesipour, and M. Ouellette,“Unresponsiveness to glucantime treatment in
Iranian cutaneous Leishmaniasis due to drugresistant Leishmania tropica parasites,” PLoS Med., vol. 3, no. 5, pp. 659–667, 2006, doi:
10.1371/journal.pmed.0030162.
38. Al-Maiahy. I. A.-M. and A. A. R. A. Ali Raheem Kareem Al-Maiahy, “The Cellular Evaluation Of Some Oxidative - Endogenous Enzymatic
Antioxidants Status Among Patients With Cutaneous Leishmaniasis,” Plant Arch., vol. 21, no. 1, pp. 2184–2185, 2021.
39. M. Rossi and N. Fasel, “How to master the host immune system? Leishmania parasites have the solutions!,” Int. Immunol., vol. 30, no. 3, pp. 103–111, 2018, doi: 10.1093/intimm/dxx075.
40. B. G. Hill, B. P. Dranka, S. M. Bailey, J. R.Lancaster, and V. M. Darley-Usmar, “What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology,” J. Biol. Chem., vol. 285, no. 26, pp. 19699–19704, 2010, doi: 10.1074/jbc.R110.101618.
41. F. C. Fang, “Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies,” Nat. Rev. Microbiol., vol. 2, no. 10, pp. 820–832,2004, doi: 10.1038/nrmicro1004.
42. R. L. Krauth-Siegel and M. A. Comini, “Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism,” Biochim. Biophys. Acta - Gen. Subj., vol. 1780,no. 11, pp. 1236–1248, 2008, doi:10.1016/j.bbagen.2008.03.006.
43. S. Esmaeeli, S. M. Hoseinirad, M. Rajabian, A.R. Taheri, F. Berenji, and S. I. Hashemy,“Evaluation of the oxidant-antioxidant balance,
isoprostane and quantitative CRP in patients with cutaneous leishmaniasis,” Microb. Pathog., vol.137, p. 103738, 2019, doi:
10.1016/j.micpath.2019.103738.
44. Z. Xing, A. Zganiacz, and M. Santosuosso, “Role of IL-12 in macrophage activation during intracellular infection: IL-12 and mycobacteria synergistically release TNF-alpha and nitric oxide from macrophages via IFN-gamma induction.,” J. Leukoc. Biol., vol. 68, no. 6, pp. 897–902, 2000, doi: 10.1189/jlb.68.6.897.
45. L. Shi, Y. J. Jung, S. Tyagi, M. L. Gennaro, and R. J. North, “Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence,” PANS, vol. 100, no. 1, pp. 241–246, 2003, doi: 10.1073/pnas.0136863100.
46. F. V. Cabral, M. T. Pelegrino, A. B. Seabra, and M. S. Ribeiro, “Nitric-oxide releasing chitosa nanoparticles towards effective treatment of cutaneous leishmaniasis,” Nitric Oxide - Biol. Chem., vol. 113–114, pp. 31–38, 2021, doi: 10.1016/j.niox.2021.04.008.
47. M. K. K. Al-Hassani and H. M. H. Al-Mayali,“Evaluation of some biochemical levels in patients with cutaneous leishmaniasis serum and their relationship with antioxidant enzymes,”EurAsian J. Biosci., vol. 14, no. 1, pp. 1999–2006, 2020, [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090671774&partnerID=40&md5=50973daf69a5fd12a17f77c9e4989778.
48. L. Farzin and M. E. Moassesi, “A comparison of serum selenium, zinc and copper level in visceral and cutaneous leishmaniasis,” J. Res. Med. Sci.,vol. 19, no. 4, pp. 355–357, 2014.
49. J. Mishra, S. Carpenter, and S. Singh, “Low serum zinc levels in an endemic area of visceral leishmaniasis in Bihar, India,” Indian J. Med. Res., vol. 131, no. 6, pp. 793–798, 2010.
50. J. Lv et al., “Effects of magnesium isoglycyrrhizinate on AST, ALT, and serum levels of Th1 cytokines in patients with alloHSCT,” Int. Immunopharmacol., vol. 46, pp. 56–61, 2017, doi: 10.1016/j.intimp.2017.02.022.
51. F. Han, L. Xu, Y. Huang, T. Chen, T. Zhou, and L. Yang, “Magnesium sulphate can alleviate oxidative stress and reduce inflammatory
cytokines in rat placenta of intrahepatic cholestasis of pregnancy model,” Arch. Gynecol. Obstet., vol. 298, no. 3, pp. 631–638, 2018, doi:
10.1007/s00404-018-4850-1.
52. F. H. Nielsen, “Magnesium deficiency and increased inflammation: Current perspectives,” J. Inflamm. Res., vol. 11, pp. 25–34, 2018, doi: 10.2147/JIR.S136742.
53. A. Taghipour et al., “Leishmaniasis and Trace Element Alterations: a Systematic Review,” Biol. Trace Elem. Res., vol. 199, no. 10, pp. 3918– 3938, 2021, doi: 10.1007/s12011-020-02505-0.
54. A. Dighal et al., “Iron trafficking in patients with Indian post kala-azar dermal leishmaniasis,”PLoS Negl. Trop. Dis., vol. 14, no. 2, pp. 1–18, 2020, doi: 10.1371/journal.pntd.0007991.
55. M. C. Taylor and J. M. Kelly, “Iron metabolism in trypanosomatids, and its crucial role in infection,” Parasitology, vol. 137, no. 6, pp. 899– 917, 2010, doi: 10.1017/S0031182009991880.
56. I. Q. H. Phan et al., “Iron superoxide dismutases in eukaryotic pathogens: New insights from Apicomplexa and Trypanosoma structures,” Acta Crystallogr. Sect. F, vol. 71, pp. 615–621, 2015, doi: 10.1107/S2053230X15004185.
57. E. Shiferaw et al., “Hematological profiles of visceral leishmaniasis patients before and after treatment of anti-leishmanial drugs at University of Gondar Hospital; Leishmania Research and Treatment Center Northwest, Ethiopia,” BMC Infect. Dis., vol. 21, no. 1, pp. 1–7, 2021, doi:10.1186/s12879-021-06691-7.
58. Mahdi, E. M., & Mustafa, M. A. (2022). Effect of different concentrations of extract of Urtica dioica and Cladosporium cladosporiodes on Tribolium castaneum or: Coleoptera after 24-48 hours of exposure in Samarra City/Iraq. HIV Nursing, 22(2), 3207-3210.
59. Mustafa, M. A., Kadham, S. M., Abbass, N. K.,Karupusamy, S., Jasim, H. Y., Alreda, B. A., ... & Ahmed, M. T. (2023). A novel fuzzy M-transform technique for sustainable ground water level prediction. Applied Geomatics, 1-7.
60. Kadham, S. M., Mustafa, M. A., Abbass, N. K.,& Karupusamy, S. (2022). IoT and artificial intelligence–based fuzzy-integral N-transform
for sustainable groundwater management. Applied Geomatics, 1-8