Anti-Proliferative Activity of Prunus Dulcis Seed Oil Alone and in Combination with Aspirin on Human umbilical vein endothelial (HUVECs) and Kaposi sarcoma (KS) cells

Main Article Content

Zainab K. Ali
Hayder B Sahib

Keywords

HUVEC, KS, MTT assay, RT- PCR, SAO .

Abstract

This study's objective was to investigate the potential anticancer, and antiproliferative influence of Iraqi Sweet almond oil (SAO) and aspirin, alone and in combination, on human umbilical vein endothelial cells (HUVECs) and Kaposi sarcoma (KS) cells. The researchers tested different concentrations of SAO and the combination of SAO and aspirin on the cells for 24 hours and measured their viability, cytotoxicity, and cell growth using MTT assays. They also determined the IC50 values for the anticancer and antiproliferative actions of SAO and measured the gene descried of vascular endothelial growth factor 2 (VEGF2) in KS cells using real-time polymerase chain reaction (RT-PCR). The results showed that the SAO had significant antiproliferative and anticancer activity against KS cells and demonstrated selective toxicity against HUVEC cancer cells. The combination of SAO and aspirin had low inhibitory effects. Gas chromatography analysis identified various compounds in SAO, including fatty acids and vitamin E. The researchers concluded that SAO from Iraq may have anticancer, antiangiogenic, and antiproliferative properties on KS cells through its molecular signaling
pathways, as demonstrated by the suppression of VEGF2 expression in KS cells.

Abstract 231 | pdf Downloads 177

References

1. de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global Burden of Cancer Attributable to Infections in 2018: A Worldwide
Incidence Analysis. Lancet Glob. Heal. 2020, 8, e180--e190.
2. Panyajai, P.; Chueahongthong, F.; Viriyaadhammaa, N.; Nirachonkul, W.; Tima, S.; Chiampanichayakul, S.; Anuchapreeda, S.;
Okonogi, S. Anticancer Activity of Zingiber Ottensii Essential Oil and Its Nanoformulations. PLoS One 2022, 17, e0262335.
3. Hussain, P.R.; Chatterjee, S.; Variyar, P.S.; Sharma, A.; Dar, M.A.; Wani, A.M. Bioactive Compounds and Antioxidant Activity of Gamma
Irradiated Sun Dried Apricots (Prunus Armeniaca L.). J. Food Compos. Anal. 2013, 30, 59–66.
4. Benedito, R.; Rocha, S.F.; Woeste, M.; Zamykal, M.; Radtke, F.; Casanovas, O.; Duarte, A.; Pytowski, B.; Adams, R.H. Notch-Dependent
VEGFR3 Upregulation Allows Angiogenesis without VEGF--VEGFR2 Signalling. Nature 2012, 484, 110–114.
5. Kodad, O.; Estopañán, G.; Juan, T.; Alonso, J.M.; Espiau, M.T.; i Company, R.S. Oil Content, Fatty Acid Composition and Tocopherol Concentration in the Spanish Almond Genebank Collection. Sci. Hortic. (Amsterdam). 2014, 177, 99–107.
6. Kodad, O.; Fernandez-Cuesta, A.; Velasco, L.; Estopañán, G.; El Baji, M.; Mart\’\inez-Garc\’\ia, P.J.; Mart\’\inez-Gómez, P.; i Company, R.S.Genotype and Environment Effects on Phytosterol and Tocopherol Contents in Almond Kernel Oil. Seeds 2022, 1, 260–270.
7. Zhu, Y.; Wilkinson, K.L.; Wirthensohn, M.G. Lipophilic Antioxidant Content of Almonds (Prunus Dulcis): A Regional and Varietal Study.
J. Food Compos. Anal. 2015, 39, 120–127.
8. Kara H., A.H.F.T.İ.E.F.& B.M.R. Bioactive Phytochemicals from Almond (Prunus Dulcis) Oil Processing By-Products. In Bioactive
Phytochemicals from Vegetable Oil and Oilseed Processing By-products; Springer, 2022; pp. 1–25.
9. Damasceno, N.R.T.; Pérez-Heras, A.; Serra, M.; Cofán, M.; Sala-Vila, A.; Salas-Salvadó, J.; Ros, E. Crossover Study of Diets Enriched with Virgin Olive Oil, Walnuts or Almonds. Effects on Lipids and Other Cardiovascular Risk Markers. Nutr. Metab. Cardiovasc. Dis. 2011, 21, S14--S20.
10. Jia, X.-Y.; Zhang, Q.-A.; Zhang, Z.-Q.; Wang, Y.; Yuan, J.-F.; Wang, H.-Y.; Zhao, D. Hepatoprotective Effects of Almond Oil against
Carbon Tetrachloride Induced Liver Injury in Rats. Food Chem. 2011, 125, 673–678.
11. Davis, P.A.; Iwahashi, C.K. Whole Almonds and Almond Fractions Reduce Aberrant Crypt Foci in a Rat Model of Colon Carcinogenesis. Cancer Lett. 2001, 165, 27–33.
12. Ulrich-Merzenich, G.; Panek, D.; Zeitler, H.; Wagner, H.; Vetter, H. New Perspectives for Synergy Research with the “Omic”- Technologies. Phytomedicine 2009, 16, 495–508.
13. Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.F.; Meade, T.W.; Mehta, Z. Effect of Daily Aspirin on Risk of Cancer Metastasis: A Study of Incident Cancers during Randomised Controlled Trials. Lancet 2012, 379, 1591–1601.
14. Dai, X.; Yan, J.; Fu, X.; Pan, Q.; Sun, D.; Xu, Y.; Wang, J.; Nie, L.; Tong, L.; Shen, A.; et al. Aspirin Inhibits Cancer Metastasis and
Angiogenesis via Targeting HeparanaseThe New Function of Aspirin as a Heparanase Inhibitor. Clin. Cancer Res. 2017, 23, 6267–6278.
15. Xie, S.; Wang, Y.; Huang, Y.; Yang, B. Mechanisms of the Antiangiogenic Effects of Aspirin in Cancer. Eur. J. Pharmacol. 2021, 898,
173989.
16. Savoire, R.; Lanoisellé, J.-L.; Vorobiev, E. Mechanical Continuous Oil Expression from Oilseeds: A Review. Food Bioprocess Technol.
2013, 6, 1–16.
17. Lem, F.F.; Cheong, B.E.; Teoh, P.L. Ruellia Tuberosa Ethyl Acetate Leaf Extract Induces Apoptosis and Cell Cycle Arrest in Human Breast Cancer Cell Line, MCF-7. Sci. Pharm. 2022, 90, 44.
18. Jeong, S.U.; Hwang, H.S.; Park, J.-M.; Yoon, S.Y.; Shin, S.-J.; Go, H.; Lee, J.-L.; Jeong, G.; Cho, Y.M. PD-L1 Upregulation by the MTOR
Pathway in VEGFR-TKI-Resistant Metastatic Clear Cell Renal Cell Carcinoma. Cancer Res.Treat. 2022.
19. Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J.
Immunol. Methods 1983, 65, 55–63.
20. Accomando, W.P.; Wiencke, J.K.; Houseman, E.A.; Nelson, H.H.; Kelsey, K.T. Quantitative Reconstruction of Leukocyte Subsets Using DNA Methylation. Genome Biol. 2014, 15, 1–12.
21. Kaneda, R.; Toyota, M.; Yamashita, Y.; Koinuma, K.; Choi, Y.L.; Ota, J.; Kisanuki, H.; Ishikawa, M.; Takada, S.; Shimada, K.; et al.
High-Throughput Screening of Genome Fragments Bound to Differentially Acetylated Histones. Genes to cells 2004, 9, 1167–1174.
22. Forgue-Lafitte, M.-E.; Coudray, A.-M.; Bréant, B.; Mešter, J. Proliferation of the Human Colon Carcinoma Cell Line HT29: Autocrine Growth and Deregulated Expression of the c-Myc Oncogene. Cancer Res. 1989, 49, 6566–6571.
23. Luthra, R.; Medeiros, L.J. 5’→ 3’ExonucleaseBased Real-Time PCR Methods for Detecting the t (14; 18) and t (11; 14) in Non-Hodgkin’s Lymphomas. J. Clin. Ligand Assay 2000, 23, 6–14.
24. Estalilla, O.C.; Medeiros, L.J.; Manning, J.T.; Luthra, R. 5′→ 3′ Exonuclease-Based Real-Time PCR Assays for Detecting the t (14; 18)(Q32; 21): A Survey of 162 Malignant Lymphomas and Reactive Specimens. Mod. Pathol. 2000, 13, 661–666.
25. Liu, F.; Wang, B.; Li, L.; Dong, F.; Chen, X.; Li, Y.; Dong, X.; Wada, Y.; Kapron, C.M.; Liu, J. Low-Dose Cadmium Upregulates VEGF
Expression in Lung Adenocarcinoma Cells. Int. J. Environ. Res. Public Health 2015, 12, 10508–10521.
26. Roncero, J.M.; Álvarez-Ort\’\i, M.; PardoGiménez, A.; Rabadán, A.; Pardo, J.E. Review about Non-Lipid Components and Minor FatSoluble Bioactive Compounds of Almond Kernel. Foods 2020, 9, 1646.
27. Tauler, M.; Baraza, E. Improving the Acclimatization and Establishment of Arundo Donax L. Plantlets, a Promising Energy Crop,
Using a Mycorrhiza-Based Biofertilizer. Ind. Crops Prod. 2015, 66, 299–304.
28. Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of ColdPressing and Soxhlet Extraction Systems for
Bioactive Compounds, Antioxidant Properties, Polyphenols, Fatty Acids and Tocopherols in Eight Nut Oils. J. Food Sci. Technol. 2018, 55,
3163–3173.
29. Özcan, M.M.; Al Juhaimi, F.; Ghafoor, K.; Babiker, E.E.; Özcan, M.M. Characterization of Physico-Chemical and Bioactive Properties of
Oils of Some Important Almond Cultivars by Cold Press and Soxhlet Extraction. J. Food Sci. Technol. 2020, 57, 955–961.
30. Jiang, Q. Natural Forms of Vitamin E: Metabolism, Antioxidant, and Anti-Inflammatory Activities and Their Role in Disease Prevention
and Therapy. Free Radic. Biol. Med. 2014, 72,76–90.
31. Filiz Mericli; Becer, E.; Kabadayı, H.; Hanoglu, A.; Hanoglu, D.Y.; Yavuz, D.O.; Ozek, T.; Vatansever, S. Fatty Acid Composition and
Anticancer Activity in Colon Carcinoma Cell Lines of Prunus Dulcis Seed Oil. Pharm. Biol. 2017, 55, 1239–1248.
32. Tan, M.L.; Sulaiman, S.F.; Najimuddin, N.; Samian, M.R.; Muhammad, T.S.T. Methanolic Extract of Pereskia Bleo (Kunth) DC.(Cactaceae) Induces Apoptosis in Breast Carcinoma, T47-D Cell Line. J. Ethnopharmacol. 2005, 96, 287–294.
33. Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical
Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014.
34. Carrillo, C.; Cavia, M. d; Alonso-Torre, S.R. Oleic Acid Inhibits Store-Operated Calcium Entry in Human Colorectal Adenocarcinoma
Cells. Eur. J. Nutr. 2012, 51, 677–684.
35. Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin Content of Seeds, Kernels and Food Products Commercially-Available in the UK.
Food Chem. 2014, 152, 133–139.
36. Chappell, A.; Scott, K.P.; Griffiths, I.A.; Cowan, A.A.; Hawes, C.; Wishart, J.; Martin, P. The Agronomic Performance and Nutritional Content of Oat and Barley Varieties Grown in a Northern Maritime Environment Depends on Variety and Growing Conditions. J. Cereal Sci. 2017, 74, 1–10.
37. Mohamed, M. Ben; Guasmi, F.; Ali, S. Ben; Radhouani, F.; Faghim, J.; Triki, T.; Kammoun, N.G.; Baffi, C.; Lucini, L.; Benincasa, C. The LCMS/MS Characterization of Phenolic Compounds in Leaves Allows Classifying Olive Cultivars Grown in South Tunisia. Biochem. Syst. Ecol. 2018, 78, 84–90.
38. Kerbel, R.S. Tumor Angiogenesis. N. Engl. J. Med. 2008, 358, 2039–2049.
39. Keser, S.; Demir, E.; Yılmaz, Ö. Phytochemicals and Antioxidant Activity of the Almond Kernel (Prunus Dulcis Mill.) from Turkey. J. Chem. Soc.Pakistan 2014, 36.