Occurrence Of CTX-M I gene in Beta lactam resistance Neisseria gonorrhoeae isolated Form women with endocervical infection
Main Article Content
Keywords
Neisseria gonorrhoeae, endocervical infection, Extended-spectrum β-lactamases (ESBLs), blaCTX-MI.
Abstract
Background: Gonococcus is one of the virtually bacteria related to sexually transmitted diseases with high genetic variability, making it more prone to the acquisition of antibacterial resistance particularly to extended-spectrum β-lactamases (ESBLs). In the last years, the most prevalent ESBLs are of the CTX-M type.
Aim: To investigate the occurrence of CTX-M I gene in Beta lactam resistance Endocervical infection-related Neisseria gonorrhoeae isolated from female patients.
Methods: Fifteen Neisseria gonorrhoeae isolates that previously recovered from endocervical swab samples of women with bacterial vaginosis were used in this study. All bacterial isolates and they're resistant to different antibiotics were investigated by VITEK 2 microbial identification system. After plasmid DNA extraction, monoplex-PCR with primer sequences targeting plasmid - mediated -
blaCTX-MI resistance gene was used.
Results: Out of Fifteen isolates of resistant Neisseria gonorrhoeae, the plasmid-mediated blaCTXMI resistant gene was detected in 9 (60%) with amplicon product (499 pb).
Conclusions: The emergence of the CTX-M I gene in Neisseria gonorrhoeae is a major threat to the current beta lactam antibiotics that are used in the treatment of gonorrhea in our country.
References
2. Jose PP, Vivekanandan V, Sobhanakumari K. Gonorrhea: Historical outlook. J Ski Sex Transm Dis. 2020;2(2):110–4.
3. Yang F, Yan J. Antibiotic resistance and treatment options for multidrug-resistant gonorrhea. Infectious Microbes & Diseases. 2020
Jun 1;2(2):67-76.
4. Whelan J, Abbing-Karahagopian V, Serino L, Unemo M. Gonorrhoea: a systematic review of prevalence reporting globally. BMC infectious diseases. 2021 Dec;21(1):1-23.
5. Esposito CP. Intrauterine devices in the context of gonococcal infection, chlamydial infection, and pelvic inflammatory disease: not mutually exclusive. Journal of Midwifery & Women's Health. 2020 Jul;65(4):562-6.
6. Alfaresi M, Kim Sing G, Senok A. First report of blaCTX-M-28 in Enterobacteriaceae isolates in the United Arab Emirates. Journal of pathogens. 2018 Jan 18;2018.
7. Lahlaoui H, Khalifa AB, Moussa MB. Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase
(ESBL). Medecine et maladies infectieuses. 2014 Sep 1;44(9):400-4.
8. Jones AM, Bevan ER, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. Journal of antimicrobial chemotherapy. 2017 Aug 1;72(8):2145-55.
9. Eyre DW, Sanderson ND, Lord E, et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined
ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 2018;23(27):1800323.
10. Mirzaee M, Pourmand MR, Chitsaz MO, Mansouri S. Antibiotic resistance to third generation cephalosporins due to CTX-M-Type
Extended-Spectrum β-Lactamases in clinical isolates of Escherichia coli. Iranian Journal of Public Health. 2009;38(1):10-7.
11. Carannante A, Vacca P, Ghisetti V, Latino MA, Cusini M, Matteelli A, Vocale C, Prignano G, Leli C, Ober P, Antonetti R. Genetic resistance determinants for cefixime and molecular analysis of gonococci isolated in Italy. Microbial Drug Resistance. 2017 Mar 1;23(2):247-52.
12. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Frontiers in microbiology. 2012 Apr 2;3:110.
13. Cao X, Cavaco LM, Lv Y, Li Y, Zheng B, Wang P, Hasman H, Liu Y, Aarestrup FM. Molecular characterization and antimicrobial susceptibility testing of Escherichia coli isolates from patients with urinary tract infections in 20 Chinese hospitals. Journal of clinical microbiology. 2011 Jul;49(7):2496-501.
14. Sánchez-Busó L, Golparian D, Corander J, Grad YH, Ohnishi M, Flemming R, Parkhill J, Bentley SD, Unemo M, Harris SR. The impact of
antimicrobials on gonococcal evolution. Nature microbiology. 2019 Nov;4(11):1941-50.
15. Golparian D, Harris SR, Sánchez-Busó L, Hoffmann S, Shafer WM, Bentley SD, Jensen JS, Unemo M. Genomic evolution of Neisseria
gonorrhoeae since the pre-antibiotic era (1928– 2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC genomics. 2020 Dec;21(1):1-3.
16. Kivata MW, Mbuchi M, Eyase F, Bulimo WD, Kyanya CK, Oundo V, Mbinda WM, Sang W, Andagalu B, Soge OO, McClelland RS. Plasmid
mediated penicillin and tetracycline resistance among Neisseria gonorrhoeae isolates from Kenya. BMC Infectious Diseases. 2020
Dec;20(1):1-1.
17. Pitt R, Sadouki Z, Town K, Fifer H, Mohammed H, Hughes G, Woodford N, Cole MJ. Detection of tet (M) in high-level tetracycline-resistant Neisseria gonorrhoeae. The Journal of antimicrobial chemotherapy. 2019 Jul 1;74(7):2115-6.
18. Balkhed ÅÖ, Tärnberg M, Monstein HJ, Hällgren A, Hanberger H, Nilsson LE. High frequency of co-resistance in CTX-M-producing Escherichia coli to non-beta-lactam antibiotics, with the exceptions of amikacin, nitrofurantoin, colistin, tigecycline, and fosfomycin, in a county of Sweden. Scandinavian Journal of Infectious Diseases. 2013 Apr 1;45(4):271-8.)
19. Ehlers MM, Veldsman C, Makgotlho EP, Dove MG, Hoosen AA, Kock MM. Detection of bla SHV, bla TEM and bla CTX-M antibiotic
resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital. FEMS Immunology & Medical
Microbiology. 2009 Aug 1;56(3):191-6.)