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Abstract:  

Synthetic methodology developed for (–)-(5R, 6S)-erythro-6-acetoxy-5-hexadecanolide,which is a 

D-ribose based synthetic pheromone used to promote mosquito oviposition. The important steps 

involved are Grignard reaction, oxidative cleavage of 1,2-diol followed by Wittig-Horner reaction, 

lactonization with magnesium and acetylation. 
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1. Introduction 

 Erythro-6-acetoxy-5-hexadecanolide 1 is a key component of the mosquito culex pipiens fatigans 

apical droplet of eggs, which Pickett and Laurence discovered in 1979 [1]. The west Nile virus can 

be spread by mosquitoes, which are primarily found in arid regions where they serve as a vector for 

filarial infections [2, 3]. The demand for safer pest control without the use of toxic insecticides or 

pesticides is what drives the majority of interest in this family of chemicals [4]. A few insect 

pheromones are being used commercially and others are undergoing field trials [5]. In keeping with 

our desire to investigate the potential applications of the Erythro-6-acetoxy-5-hexadecanolide, it has 

been hypothesized that the oviposition pheromone acts on quinquefasciatus as both an attractant and 

a stimulant [6]. The pheromone’s absolute configuration was discovered to be (5R, 6S) by comparing 

the Mori’s synthetic enantiomer [7]. The compound 1 is a δ-lactone which has two chiral centres and 

a decanyl side chain. The enantiomer of 1 was first synthesized by Fuganti et al in 1982 [8]. It was 

determined that (-)-(5R, 6S)-6-acetoxy-5-hexadecanolide 1 was the active natural pheromone and 

shown in figure 1.  

 

 
Figure 1: (–)-(5R, 6S)-Erythro-6-acetoxy-5-hexadecanolide 1 
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The numerous synthetic approaches to the pheromone that attracts mosquito oviposition have been 

reported and synthesized [9-41]. Das et al. reported the facile total synthesis of (–)-(5R, 6S)-Erythro-

6-acetoxy-5-hexadecanolide through epoxide opening by lithiated salt of ethylpropionate and acid 

catalysed lactonization [13]. Wang et al. reported the total synthesis of (–)-(5R, 6S)-Erythro-6-

acetoxy-5-hexadecanolide by using 1,2-cyclohexanediol, using kinetic resolution of cyclic allylic 

alcohol by modified Sharpless asymmetric epoxidation reagent [25]. Couladouros and Mihou 

reported the synthesis of (–)-(5R, 6S)-Erythro-6-acetoxy-5-hexadecano lide via a carbonate ester, 

utilizing a novel lactonization with inversion of stereochemistry [18].  

The reported synthetic routes to (–)-(5R, 6S)-Erythro-6-acetoxy-5-hexadecanolide mainly associated 

with the long reaction sequences, lower yields, and heavier workup procedures are some of the 

disadvantages in the earlier reported methods. To overcome the problems associated with earlier 

approaches, here in, we reported an alternative synthetic version of the easily accessible basic D-

ribose. Here, we describe an effective synthesis of (–)-(5R, 6S)-Erythro-6-acetoxy-5-hexadecanolide 

in a highly stereo selective manner as part of our ongoing research on the entire synthesis of 

physiologically active natural compounds. An interim and methodical route to it still needs to be 

traversed. In this perception, we have reported a new stereoselective synthesis of compound 1 by 

using the Grignard reaction, followed by oxidative cleavage of 1, 2 diol, Wittig-Horner reaction and 

lactonization with magnesium mediated electron transfer reduction reactions in the sequence. Our 

reported synthetic methodology starting from commercially and cheaply available starting material, 

D-ribose with five synthetic steps and also involve simple reactions with easier experimental work 

with high purity are some advantages of this methodology compared with previous research 

methodologies.     

 

2. Experimental Section 

2.1. General 

Th reaction was performed under inert atmosphere, in oven dried glassware.  solvents   such as THF 

and DCM were dried according to the standard procedures. With the use of 0.25 mm E. Merck pre-

coated silica gel plates (60 F254), reactions were observed using TLC, and visualization was made 

possible by immersion in an ethnolic solution of the p-anisaldehyde stain after heating. On a Brucker, 
1H NMR spectra were captured at 400 or 500 MHZ, whereas 13C NMR spectra were captured on a 

Brucker at either 100 or 125 MHz, respectively. coupling constants (J) are provided in Hertz (Hz) 

while chemical shifts (δ) were reported in ppm (parts per million). With a Brucker alpha 

spectrophotometer, FTIR spectra were captured and presented in cm-1. Electrospray ionization time-

off light technique was used to record HRMS data. Utilizing a polarimeter from PerkinElmer (model 

341), optical rotations [D20] were observed. 

     

2.1.1. (3aR,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d] [1,3] dioxol-4-ol (4) 

A stirred suspension of D-ribose 5 (10 g, 6.66 mol) in acetone (100 mL) was cooled to 0oC, treated 

with 2,2-dimethoxypropane (16.4 mL, 13.3 mol) and p-toluenesulfonic acid (1.26 g, 0.66 mmol) and 

stirred while at room temperature for 1 h. The resulting clear reaction mass was neutralized with solid 

NaHCO3 and filtered over a pad of celite. The filtrate was concentrated in vacuo and silica gel column 

chromatography purified (EtOAc:hexane = 1:2) to give compound 2 (11.5 g, 91%) as a colorless oil. 

[α]D
25-24.8 (c 1.0, CHCl3). 

1H NMR (500 MHz, CDCl3 ): δ 5.41 (s, 2H), 4.82  (d, J = 6.7 Hz, 1H),  

4.58 (d, J = 5.7 Hz, 1H), 4.39 (s, 1H), 3.79-3.64 (m, 2H), 4.17-397 (brs, 1H), 1.49 (S, 3H), 1.32 (s, 

3H); 13C NMR (100 MHz, CDCl3 ): δ 112.0, 102.6, 87.5, 86.6, 81.5, 63.4, 26.2, 24.6; IR (neat): ν 

3345, 2923, 2854, 1726, 1461, 1376, 1055 cm-1; MS (ESI): m/z 208 [M+NH4]
+; HRMS: calcd for 

C8H8O5N [M+NH4]
+ 208.1179; found: 208.1173. 

 

 2.1.2. 1-((4R,5S)-5-((R)-1-hydroxyundecyl)-2,2-dimethyl-1,3-dioxolan-4-yl) ethane-1,2-diol (3) 

To a stirred solution of compound 4 (3 g, 15.7 mmol) in THF at 0 °C was slowly added decanyl 

magnesium bromide (56 mL, 55.2 mol (freshly prepared from magnesium (1.45 g, 60.5) and decanyl 

bromide (12.5 mL, 55.1 mmol) in THF 42.6 mL at 66 °C for 4 h) and stirring was continued for 6 h 
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at room temperature. With saturated NH4Cl, the reaction mixture was quenched and concentrated. 

Three times 30 mL of ethyl acetate were used to extract the reaction mixture, which was then dried 

over Na2SO4, filtered and concentrated under reduced pressure. To produce triol (1.8g, 61%) as a 

colourless liquid, the resulting residue was purified using column chromatography (EtOAc: Hexane, 

17:3). 1H NMR (500 MHz, CDCl3 ): δ 4.1-4.06 (m, 1H), 4.03-3.96(m, 1H), 3.89-3.78(m, 3H), 3.74-

3.67 (m, 1H), 1.84-1.74 (m, 1H), 1.60-1.40 (m, 2H), 1.37 (s, 3H), 1.33 (s, 3H), 1.36-1.20 (m, 18H), 

0.88 (t, J = 6.7, 3H); 13C NMR (100 MHz, CDCl3 ): δ 108.5, 80.2, 77.4(2), 69.5(2), 64.1, 34.0, 31.8, 

29.6, 29.6(3), 29.3, 27.9, 25.4, 24.9, 22.6, 14.0; IR (neat): ν 3390, 2922, 2855, 1459, 1374, 1219, 

1064 cm-1; MS (ESI): m/z 335 [M+Na]+; HRMS: calcd for C18H36NaO5 [M+Na]+ 335.2455; found: 

335.2446.  

 

 2.1.3. Ethyl (Z)-3-((4R,5S)-5-((R)-1-hydroxyundecyl)-2,2-dimethyl-1,3-dioxolan-4-yl) acrylate (2) 

To a stirred solution of compound 3 (1.0 g, 3.01 mmol) in DCM (10 mL) at 0 oC were added NaIO4 

(1.28 g, 6.02) and saturated NaHCO3 (0.5mL) and stirring was continued for 6 h at room temperature. 

To the reaction mixture was added ethyl(triphenylphosphoranylidene)acetate (C2 ylide) at 0 oC and 

stirred for 4 h. The resulting mixture was filtered, dried over Na2SO4, filtered and concentrated under 

reduced pressure. The obtained crude residue was purified by column chromatography to give (746 

mg, 67%) α,β unsaturated ester as a colorless liquid. [α]D
25- 128.8 (c 1.6, CHCl3); 

1H NMR (300 

MHz, CDCl3 ): δ 6.28 (dd, J =8.8, 11.5 Hz, 1H), 6.00 (d, J = 11.5 Hz, 1H), 5.54 (dd, J = 7.1, 7.9 Hz, 

1H), 4.20 (q, J =7.1 Hz, 2H), 4.20-4.16 (m, 1H), 3.58 (dd, J = 7.7, 7.9 Hz, 1H), 3.01-2.94 (bs, 1H), 

1.51 (s, 3H), 1.38 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.36-1.20 (m, 18H), 0.88 (t, J= 6.8Hz, 3H); 13C 

NMR (100 MHz, CDCl3 ): δ 167.0, 146.5, 121.8, 109.2, 81.8, 74.6, 70.1, 61.1, 33.5, 31.8, 29.6, 

29.5(3), 29.2, 27.9, 25.4, 25.1, 22.6, 14.0(2); IR (neat): ν 3468, 3113, 2922, 2859, 1718, 1647, 1461, 

1376, 1057 cm-1; MS (ESI): m/z 371 [M+H]+; HRMS: calcd for C21H39O5 [M+H]+ 371.2792; found: 

371.2801. 

 

2.1.4. (S)-6-((S)-1-hydroxyundecyl) tetrahydro-2H-pyran-2-one (6) 

Mangnesium (64 mg, 2.70 mmol) was added to a stirred solution of compound 2 (100 mg, 0.270 

mmol) in methanol (5 mL) and reflux for 4 h. Then the reaction mixture was filtered and concentrated 

under reduced pressure to obtain the residue which was purified by column chromatography (EtOAc: 

Hexane, 3:2) to afford lactone 6 (34.2 mg, 47%) along with diol 7 (11.1 mg, 13%) as colourless 

liquids. [α]D
2513.5 (c 0.3, CH2Cl2); [lit

17]. [α]D
20 12.6 (c 1.05, CH2Cl2)]; IR (neat): ν 3279, 2921, 2853, 

1715, 1458, 1283, 1071 cm-1. 1H NMR (CDCl3, 300 MHz): d (ppm) 4.15–4.25 (m, 2H), 3.74–3.81 

(m, 1H), 2.41–2.61 (m, 2H), 1.74–2.03 (m, 4H), 1.18–1.57 (m, 18H), 0.88 (t, 3H, J = 6.98 Hz). 13C 

NMR (CDCl3, 75 MHz): d (ppm) 171.7, 83.4, 72.3, 31.8, 31.6, 29.7, 29.5, 29.2, 25.8, 22.6, 21.0, 

18.2, 14.0 ppm; MS (ESI): m/z 293 [M+Na]+; (LC–MS): m/z = 293 [M+Na]+. HRMS: calcd for 

C16H30NaO3 [M+Na]+ 293.2087; found: 293.2102. 

 

2.1.5. (S)-1-((S)-6-oxotetrahydro-2H-pyran-2-yl)undecyl acetate (1) 

To a stirred solution of compound 6 (20 mg, 0.074 mmol) in DCM (1 mL) at 0 oC were sequentially 

added triethyl amine (21 µL, 0.148 mmol), DMAP (1 mg, 0.007 mmol) and acetic anhydride (9 µL, 

0.088 mmol). The reaction mixture was stirred for 4 h. Then the reaction mixture was concentrated 

under reduced pressured and purified by column chromatography (EtOAc:Hexane, 1:4) to give 

acetate (21 mg, 91%) as a colourless liquid. [α] D
20 -31.8 (c 0.4, CHCl3); [lit.

5] [α] D
20 35.4 (c 0.85, 

CHCl3)]; IR (neat): ν (cm-1) 2924, 2853, 1737, 1373, 1240, 1073. 1H NMR (CDCl3, 300 MHz): δ 

(ppm) 4.93–5.03 (m, 1H), 4.35 (ddd, J = 3.0, 7.5, 10.5 Hz, 1H), 2.55–2.66 (m, 1H), 2.40–2.51 (m, 

1H), 2.08 (s, 3H), 1.75–2.06 (m, 2H), 1.52–1.74 (m, 4H), 1.13–1.40 (m, 16H), 0.88 (t, 3H, J = 7.5 

Hz). 13C NMR (CDCl3, 75 MHz): δ (ppm) 170.8, 170.4, 80.5, 74.3, 31.9, 29.6, 29.5, 29.4, 29.3, 25.2, 

23.5, 22.7, 21.0, 18.2, 14.1; MS (ESI): m/z 335 [M+Na]+; HRMS: calcd for C18H32NaO4 [M+Na]+ 

335.2192; found: 335.2194. 
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3. Results and Discussions 

As per the retrosynthetic analysis, (–)-(5R, 6S)-erythro-6-acetoxy-5-hexadecanolide 1 (Scheme 1) 

should be derived from magnesium mediated electron transfer reduction followed by lactonisation of 

α,β-unsaturated ester 2, which in turn would be obtained from oxidative cleavage and Horner-Wittig 

olefination of 1,2 diol 3. The compound 3 can be accessed from alkylation of ribose acetonide 4 which 

was obtained from commercially available D-Ribose. 

 

 
Scheme 1: Retrosynthetic analysis of (–)-(5R, 6S)-erythro-6-acetoxy-5-hexadecanolide 1 

 

The retrosynthetic analysis of our approach is shown in Scheme 1. It was envisioned that (–)-(5R, 

6S)-erythro-6-acetoxy-5-hexadecanolide (1) could be obtained from (+)- D-ribose . The six-

membered lactone could be constructed by the reductive elimination of α,β unsaturated ester and in-

situ lactonization with magnesium. The α,β unsaturated ester 6 could be obtained from alcohol 

derivative 5. The key intermediate 6 was synthesized from (+)-D-ribose 5.  

 

The total synthesis of (–)-(5R, 6S)-erythro-6-acetoxy-5-hexadecanolide 1 was shown in scheme 2. 

The synthesis of triol 3 commenced from D-ribose acetonide 4 (which was synthesized from 

commercially available D-ribose 5, according to literature) [42], which was treated with excess of 

decanyl magnesium bromide in THF at -20 °C in 83% yield [43]. The oxidative cleavage of 1,2 diol 

in 3 proceeds with NaIO4 in H2O at rt for 1h [44]. This was followed by Horner Wittig olefination to 

give corresponding α,β-unsaturated ethyl carboxylate 2 with exclusive Z-selectivity in 81% yield [45]. 

δ-lactone 6 obtained by magnesium mediated electron transfer reduction of α,β-unsaturated ester and 

subsequent in situ lactonization in 78% yield [46]. The formation of six membered lactone ring would 

be produced from c2witting reagent and tartrate protected derivative. The mechanism in scheme 3 

explained as follows. Mg in methanol system is extremely versatile, efficient and convenient reducing 

agent. The mechanism in scheme 3 involves Mg in methanol mediated reductive cyclization, 

reductive elimination, reductive cleavage and reduction of a conjugated double bond. Finally, acetate 

group was incorporated by using acetic anhydride, triethyl amine and DMAP in THF at 20 °C to 

furnish the target molecule (–)-(5R, 6S)-erythro-6-acetoxy-5-hexadecanolide 1 in 91% yield [47]. 
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Scheme 2: Synthesis of (–)-(5R, 6S)-erythro-6-acetoxy-5-hexadecanolide 1 

 

4. Conclusion 

A highly efficient and stereoselective D-ribose based synthesis of (–)-(5R,6S)-erythro-6-acetoxy-5-

hexadecanolide was achieved in 6 steps with 17.9% overall yield through magnesium mediated 

reductive cleavage and lactonization.  
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