
Vol. 30 No. 19 (2023): JPTCP (871-880)  Page | 871 

Journal of Population Therapeutics 

& Clinical Pharmacology 
 

RESEARCH ARTICLE 

DOI: 10.53555/jptcp.v30i19.3765 

 

 

Inayat Ullah1*, Alamgir2, Shahid Iqbal3 

 

1*,2Department of Statistics, University of Peshawar 
3Center for Disaster Preparedness and Management, University of Peshawar 

 

 *Corresponding author: Inayat Ullah 

* Department of Statistics, University of Peshawar. Email: inayat81271@gmail.com 

 

Abstract 

Efron (1979) introduced the n-out-of-n bootstrap, which is indeed an important tool for statistical 

inference and has wide spread applications. However, there are situations, where the n-out-of-n 

bootstrap is not consistent. Thus, the m-out-of-n bootstrap was introduced to overcome the problem. 

It reduces the computational burden associated with bootstrapping. But, the problem with m-out-of-n 

bootstrap is the choice of m, which is one of the important aspects in bootstrapping. In this paper, we 

study criteria for choosing best value of m in m-out-of-n bootstrapping in linear regression. This is a 

pure computational study that gives general criteria for optimizing m in m-out of-n bootstrap, under 

which the chosen m ( m̂ ) behaves properly. 
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Introduction 

Researchers occasionally treat the bootstrap as a magic bullet for statistical inference. It was invented 

by Efron (1979) and is based on drawing n observations from the empirical distribution of the data. 

This method is known as the naïve bootstrap. In fact, it has many applications; for examples, see (Hall, 

1992) and (Efron and Tibshirani, 1993). The bootstrap is inconsistent in some instances, though. We 

have numerous examples of this kind of bootstrap antagonism. Although the counterexamples are 

very simple, the generalization holds for a large range of estimate issues that are crucial in their 

applications. The counterexample should act as a helpful reminder that there are limitations to the 

bootstrap's applicability to issues with statistical inference. 

 

Alternative strategies are required when the conventional resampling techniques for estimating 

sampling distributions fail. For instance, a different bootstrap based on smaller-sized resamples was 

adopted if the n-out-of-n bootstrap (naive bootstrap) fails and the classical central limit theorem is 

violated(Silvia and Timothy, 2011).The m-out-of-n bootstrap was introduced as an alternative to the 

naive bootstrap(Bickel, P., Götze, F. & van Z, W. (1997). This bootstrap strategy, which was just 

recently introduced as a way to lessen the computing burden associated with bootstrapping, makes 

use of the different observations in a bootstrap sample. As long as naive bootstrap performs, it is also 

effective. However, this is the adequate bootstrap in the event that the naive bootstrap fails (Abadie 
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and Imbens, 2008). The next issue in the m-out-of-n bootstrap is the selection of m(Peter, J. B. and 

Anat, S (2008)) and (Račkauskas, F. Götze & A. (2001)). 

While solving least square problems, Cholesky decomposition method has been used in the algorithm 

for the factorization of positive symmetric matrix. This method was introduces by a mathematician 

Higham (1990) in his article "Analysis of the Cholesky decomposition of a semi-definite matrix. 

 

The Proposed Method 

We suggested the best-choices of m in m-out-of-n bootstrap criteria. Different values of 

,  ( 1,2,...,11)im i 
 are taken in the analysis given as follow: 

 1   0.63 /  *   20%m pi n 
, 

 2   1.1/  *   35%m pi n 
, 

 3    3.15 / 7  *   45%m n 

 4   1/  2  *   50%m n 
, 

 5   1.73 /   *   55%m pi n 
, 

 6  1.89 /   *   60%m pi n 
 

 7   2.045 /   *   65%m pi n 
, 

 8   4.9 / 7 *   70%m n 
, 

 9   3 /  4  *   75%m n 

 10   4 / 5 *   80%m n 
, 

 11    4.25 / 5 *   85%m n 
,       100%and m n   

 

Our objective is to determine m's ideal value. This is a pure computational study that offers broad 

guidelines for optimizing m in an m-out-of-n bootstrap, under which the selected m ( m̂ ) acts as 

intended, i.e., ˆ / 0m n  and m̂when the bootstrap is inconsistent. 

 

1.1 Algorithm for picking the best value for m in an m-out-of-n bootstrap: 

Suppose we have 1 2{ , , ,..., } for 1,2,3,...,i i i ipy x x x i n  statistical units. Linear relation between the dependent 

variable 1 2 3( , , ..., )t

nY y y y y  and p-vector of regressors 1 2( , ,..., } for 1,2,3,...,i i i ipx x x x i n 
is looks as 

Y X    
 

Where 0 1( , ,..., )t

p   
 are the parameters of the model and 1 2( , ,..., )n   

 are independent and 

identically distributed random variables with
2E( ) =0    and    Var( )i i  
.Suppose the estimate of 

is ̂ , where 0 1
ˆ ˆ ˆ ˆ( , ,..., )t

p   
. ̂ is estimated by the Least Square Estimator (LSE) 

1ˆ ( )t tX X X Y   

Our group of m-out-of-n bootstrap schemes includes 0 1 2{ , , ,..... }km m n m m m 
. It is to be noted that 

0m n
 is also a scheme used as a standard for all the other schemes. In order to determine the optimal 

m, we compare the 
( )mT 

matrices of alternative m-out-of-n bootstrap techniques with that of the 

standard scheme 0m n
. 

 

The following algorithm is used to determine the best scheme out of all possible k schemes: 

1. Generate data for linear regression on using a distribution, and then estimate ̂ by the least squares 

estimator, where the ( , )i j th  entry is 
ˆ

ij
, i.e. 

  

 

. .

1 1

2

.

1

ˆ

n n

ij j ij j

i j

ij n

ij j

i

x x y y

x x


 



 








 

Take into consideration that there are m balls and n boxes with probabilities 1 2, ,...... np p p
, where 

1

0  and 1
n

i

i

p pi


 
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Throw balls into these boxes at random. Allow the likelihood that a ball will enter in the ith  box to 

be ip
. Consider iw

be the total number of balls in the ith  box, 1

0 and 
n

i i

i

w w m


 
, then an ( )n n  

matrix W


is given by: 

1 2( , ,..., )nW w w w   
⁓ Multinomial

1 1 1( ,  ( , ,..., ))
n n n

m
 

2. Generate 1 2( , ,..., )nW w w w   
 from multinomial distribution. 

3. For each scheme generate a B P matrix 
( )im

T 
, whose ( , )b j th  entry is 

( )im

bjT 

, i.e. 

 
2

( )

ˆ ˆ

1

bj jm

bjT
m

 





1,2,...,

1,2,...,

b B

j p



  
 

where
( ) ( ) ( )1ˆ = ( )
mt d dt tz W z z W y

  

 is the bootstrap analog of 
̂

 at tm
for 1,2,...,t k . 

( )  for 1,2,...,dW i n  is an n n  diagonal matrix, whose diagonal entries are the column vectors of 

W 

matrix. 

4. For each 0 1 2{ , , ,..., }km m n m m m 
, get column means tmx 

 and variance 
2

tmS

 from 
( )im

T 
 matrix, 

where 

( ) .

1

1
t

B

m b

b

x T
B

 



 
 

and   

2 2

.

1

1
(  )

t

B

m b

b

S T x
B

  



 
 for  1, 2,...,t k  

5. Do the cholesky decomposition of each 
2

( )imS

as follow: 

 

11 11

1

1

11

,         (1,2,..., )
j

j

p a

a
p j n

p

 









 

 
1

2

1

1

1

   [2, ]

   [2, 1],  [ 1, ]

i

ii ii il

l

i

ji ji il jl ii

l

p a p i n

p a p p p i n j i n


  




    



  

 
      
 




 

where ija
 are the elements of 

2

tmS

, ijp
 are the elements of lower triangular matrix P

 and 
2 .
t

T

mS P P  
 

6. Compute the result of 
( )tG m

for 1,2,...,t k ,  

 

where 

   2 2

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
( ) . . T

t t tm m m m m mG m x x S x x P S P           
 

 

To obtain the result of 
( )tG m

 for
 ( 1,2,..., )tm t k

from each simulation, repeat these steps a lot of times 

(such as 10,000 times). take average of
( )tG m

after each simulation, where
 ( 1,2,..., )tm t k

. 
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Select that value of tm , whose 
( )tG m

value is minimum. The best choice will be that value of 

 ( 1,2,..., )tm t k
whose 

( )tG m

is minimum. 

 

Simulation Studies 

In order to evaluate the effectiveness of the criteria used in the m-out-of-n bootstrap, considering the 

complete model with p predictors 
 1 2, ,...,i i ipx x x

and the dependent variable y given as follow: 

 

0 1 1 2 2 . . . +        1,2,3,. . .i i i p ip iy x x x i n         
  (1) 

 

Where 'i s  are the independently and identically distributed (iid) standard normal errors. The 

intercept term is 1 expressed by the first component of x, while the other components are drawn, 

respectively, from the Normal, t, exponential, and Laplace distributions. The simulation studies were 

conducted by using n = 500, 1000, 1500, and 2000 as the sample sizes.The bootstrap samples are 

produced using the model (1), which has three, five, seven, nine, and eleven predictors

 . .  3,  5,  7,  9  11i e p and
. 

For each sample, an m-out-of-n bootstrap was developed using eleven different values of with

0 1 2{ , , ,..... }km m n m m m 
.Here 0m n

 is serves as the benchmark and all the other 

 1,2, ,11im i  
 are compared to it. For various m, S = 1000 Monte Carlo (MC) simulations with 

B = 1000 bootstrap replications are used to get the estimated results for the value of G
 at different 

sample sizes.The results for the value of G
 are given in the Table (1) to Table (4). The results are 

summarized as follow: 

 Table 1 shows the simulation results using data produced by the normal distribution. There are 

four alternative sample sizes used: n = 500, 1000, 1500, and 2000. For each   ( 1,2...11)im i 
, the 

values are computed. Now for n =500 and p = 3, the value of 

5( 500, 3, ) ( 500, 3, )iG n p m G n p m     
 forall  im

. Similarly, for n =1000 and p = 7,

   * *

51000,  7,  1000,  7,  iG n p m G n p m    
where   1,  2,  . . .11i  .The value of G

increases 

in each sample size as the number of predictors increases. For instance, when n=1000and p=3, the 

values of G
 at 1 m

 is 4.291952, while the value of G
for 1m

, at  p=5 is 6.758223, which shows 

increase in the value of G
. Similarly, the value of G

 decreases with the increase of the sample 

size.For instance, the value ofG
 is 4.450994 at n=500 and p=3,whereas the respective values of G

 

at p=3 are 4.291952, 4.211217 and 3.85135 forthe sample sizes ofn=1000, 1500 and 2000.In short, 

we can say that for all 3,  7,  9,  and 11p       * * *500,   1000,   < 1500,  i i iG n m G n m G n m   

 * 2000,  iG n m  1,  2,. . .11i   

It is evident from the data that for all four sample sizes,  5   1.73 /   *m pi n
  produces a smaller 

value of G
 than the other values of  ,s ( 1,2...,4,6...11)im i  . This suggests that, in the given situation, 

5m
 is the best option for m in the m-out-of-n bootstrap. 

 

 The simulation results using the data generated from the t-distribution are shown in Table 2. For 

each   ( 1,2...11)im i  , four different samples of sizes n=500, 1000, 1500 and 2000 are used to 

compute the value of G
.  Now atn=500 and p=7, we have 5( ) ( )iG m G m 

for 1,2...11i 
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.Similarly, atn=1500 and p=9,
 * *

51500,  9,  (G n p m G   1500,n  9, )ip m
for each

  1,  2,. . .,11i  . Just like in Table 1 asthenumber of predictors increases, the value of G
 also 

increases, for instance, atn=1500 and p=3, the values of G
 at 1 m  is 4.211217, on the other hand 

at p=5, 7, 9, and 11 and n=1500, the value of G
 for 1m , are 6.575076, 8.360561, 10.34293, 

12.09127  respectively. Likewise, the  G

 value decreases with the increase of the sample size, i.e. 

for instance, at p=7 and n=500 and, the G

value at 7m  is 8.541859, whereas atp=7 and n=1000, 

1500, 2000, the corresponding G
values are 8.390287, 8.078263 and 7.590608 respectively. The 

resultsshows that in all the four sample sizes, 5m
gives the smaller result for G

 compared to all

 (  1,  2,...,4,6,...11)im i 
. This suggests that in t-distribution, 5m

 is the best option for m in the m-

out-of-n bootstrap as well. 

 The simulation results using the data generated from the Laplace distribution are shown in Table 

3. For each   ( 1,2...11)im i  , four different samples of sizes n=500, 1000, 1500 and 2000 are used 

to compute the value of G
.  Now atn=500 and p=7, we have 5( ) ( )iG m G m 

for 1,2...11i  . 

Similarly, at n=1500 and p=9,
 * *

51500,  9,  (G n p m G   1500,n  9, )ip m
for each

  1,  2,. . .,11i  . Just like inTable 1 and 2, asthenumber of predictors increases, the value of G
 

also increases, for instance, at n=1500 and p=5, the values of G
 at 6m is 4.813858, on the other 

hand at p= 3, 7, 9, and 11 and n=1500, the value of G

 for 6m , are 4.012566, 5.353734, 6.647686, 

8.538686 respectively. Likewise, the  G
 value decreases with the increase of the sample size, i.e. 

for instance, at p=5 and n=500 and, the G

 value at 7m  is,5.794934, whereas at p=5 and n=1000, 

1500, 2000, the corresponding G

values are4.913191, 4.906442, 4.620683respectively. The results 

shows that in all the four sample sizes, 5m
 gives the smaller result for G

 compared to all 

 (  1,  2,...,4,6,...11)im i 
. This suggests that in Laplace distribution, 5m

 is also a best option for 

m in the m-out-of-n bootstrap. 

 The results of Table 4 are computed from the data generated from the exponential distribution. For 

each 
 (  1,  2,...11)im i 

, the G
value is calculatedby using all the sample sizes. Like the other 

distributions, in exponential distribution also, we can see that 5( ) ( )iG m G m 
for all 

1,2...11i  . Similarly, in this case, the value of G
 increases, when the number of predictors 

increases, for instance, i.e. at 6 m
, when n=2000 and p=3, the values of G

 is 3.464049, whereas 

at n=2000 and p=3, the value of G
 for 6 m

 is 6.375435 and 

5 5( , 3,2000) ( , 7,2000)G m p G m p   
.  Similarly, the value of G


 decreases with the increase of 

sample size, i.e. at n=1000 and p=5, the value ofG
for 7 m

is 5.821993, whereas the respective 

values ofG
for 7 m

, n=500, 1500, 2000 and p=5, are 6.427996, 5.71038 and 5.594662. The main 

difference between the exponential distribution is that in other distributions the value of G
 

decreases form 1 5 to m m  and then increases from 6m
 to 11m

in all sample cases. On the other 

handin exponential distribution the value of G
 decreases at 5m

and 9m
, where 5m

< 9m
. 

Therefore, the best choice for m in m-out-of-m bootstrap is 5m
in the exponential as well as other 

distributions. 
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Table 1: Simulation results of G

based on data generating from the normal distribution, with 

B=1000 and S=1000 

 

Table2: Simulation results of G

 based on data generating from the t - distribution, with 

B=1000and S=1000 

 

Table3: Simulation results of G

 based on data generating from the t - distribution, with 

B=1000and S=1000 
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Table 4: Simulation results of G

 based on data generating from the exponential distribution, with 

B=1000 and S=1000 

 

Applications on Real Data 

To check the method of selecting best choice of m in m-out-of-nbootstrap, Ten (10) real data sets are 

taken from the R-DATASETS. The data sets are ‘fgl’, ‘Boston’, ‘Fishing’, ‘Crime’, ‘Student’, 

‘College’, ‘Forest fires’, ‘RiceFarms’, ‘Weather’ and PatentsHGH. Details of the Variables of the data 

sets are given in the appendix. Short information related to the data sets are as below. 

 

Boston: -The data is related to the Housing values in Greenbelts of Boston (Harrison, and Rubinfeld. 

1978). The data contains 506 observations. It has 13 independent variables with the “rate of crime per 

capita” as dependent variable. 

 

Crime: -It is a linear regression data shows Crime in North Carolina (Baltagi, 2006). The data is 

collected in the United States of America from 1981 to 1987. It contains 630 regional observations. 

The data has 23 independent variables with one dependent variable “crimes committed per person”. 

 

fgl: - It is a linear regression data shows the Measurements of Forensic Glass Fragments (Venables, 

and Ripley, 2002). The data has 214 observations and 10 variables. The data is collected in the United 

States of America from 1981 to 1987. It contains 630 regional observations. The data has 09 

independent variables with one dependent variable “refractive index”. The data was collected by B. 

German on fragments of glass collected in forensic work. 

 

Fishing: -The data is related to the choice of fishing mode(Herriges, and Kling, 1999). It is linear 

regression data collected in United States of America. The data contains 1182 observations. The data 

has 11 independent variables and one dependent variable “monthly income”. 

Forest fires: -One of the major environmental concern to occur is the Forest fires(Amatulli, Peréz-

Cabello, de la Riva, 2007). It is also called wildfires. Due to wildfire the forest preservation is affected. 

It also ecological, economic damage, and cause for human suffering. The data has 513 observations 

with 13 variables. The only dependent variable is “the burned area”. 

 

Student: Source of the data is the Education Longitudinal Study of 2002(Ingels, 2002). The data is 

collected from the 10th grade students. Data contains 752 schools for checking its Hypothetical 

student-level. There are 9,679observations with 17 variables. There is no missing observation in the 

data. Dependent variable of the data is “math score”. 

 

RiceFarms: - The data is related to the production of Rice in the Indonesia country (Mariyono, 2014). 

1026 observations were collected fromlangan, malausma, wargabinangun, sukaambit, gunungwangi 
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and ciwangiof Indonesia. 17 variables are included in the data. “Price of rough rice per kg” is the 

dependent variable of the data. 

 

PatentsHGH: -This data indicate the Dynamic Relation between R & D and Patents. The data 

contains 1730 observations with 15 variables. The data were collectedin United States from 1975 to 

1979. 

 

College: - The College data is collected from many US Colleges. The data is related to the US News 

and World Report of 1995 issue. A data matrix of 777 observations with 18 variables are included in 

the data. “Graduation rate” is taken as the dependent variable. This dataset was used for ASA 

Statistical Graphics Section's 1995 Data Analysis Exposition. 

 

Weather: -The weather dataset is collected in 2016-17 in various cities of United States of America. 

The data has 3655 observations and 15 variables. In the data “High Temperature” is the dependent 

variable. The data was downloaded from Weather Underground in January 2018. 

 

Simulation results for each of the data set are given in Table.5. All the results for   ( 1,2...11)im i   

are compared to the slandered result of  m n .For each dataset B = 1000 bootstrap replications are 

used and for each   ( 1,2...11)im i  , the results of G
 are computed. In Table.5,the results of G

for all the nine data sets are given. The results are summarized as follow, 

 The results of G

 for 11 different choices of m for fgl dataset are given in the first column of Table. 

5. The data has 10 variables with 214 observations with no missing observation.From the results we 

can see that for each   ( 1,2,3,4,5)im i  , the value of G
 decreases. The value of G

gives 

minimum result at 5m . Now as the sample size increases beyond 5m ,  i.e.   ( 6,...11)im i   the 

value of G
also increases. This shows that in this dataset the best choice for m in m-out-of-n 

bootstrap is 5m . 

 

 The results for G
 of Boston data are shown in the second column of Table.5. In this dataset we 

have 14 variables and each variable contain506 observations.For all choices of m, the value of G
 

is computed. From the results again it is clear that the value of G
decreases from 

  ( 1,2,3,4,5)im i  and gives minimum result at 5m
 and as the value of m exceeds 5m

, the value 

of G
also increases. Here again 5m

 seems the minimum value for all the 11 choices of mand is 

considered as the best choice for m  in the rest of the  (1,2,...4,6,...11)im
choices. 

 Column 4 & 5 of Table 5, consists of dataset “forest fires” and “Crime”. Each dataset having 517 

observations with 12 & 23 variables respectively. In both the cases, we observe that the value of G


has minimum result at 5  m
. This shows that the choice of m in m-out-of-n bootstrap is robust to the 

number of variables. 

 

 Similarly, column 6 & 7 of Table .5 consists of the data set “College” and “RiceFarms”. Each the 

datasets has the same number of variables and different number of observations. But in both the 

cases, the value of G
has a minimum value for 5  m

 as compared to the all the other choices of 

 (1,2,...4,6,...11)im
. This indicates that choice of m in m-out-of-n bootstrap is robust to the sample 

size. 

 

 Four different data sets were analyzed in the last four column of Table.5. The value of  G
 is 

computed for each of the 11 different choices of m.  Each data set has different number of samples 
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and different number of variables. In each case the value of G
 has minimum value for 5  m

as 

compared to all other values of  ( 1,2,...4,6,...11)im i  .This means that 5m
 is the best choice for m  

in m-out-of-n bootstrap. 

 

Table 5: Simulation results of G

 based on TEN real data sets, with B=1000. 

 

Conclusion 

The basic theme of this study was to select the optimal value of m  in m-out-of-n bootstrap. Extensive 

simulations studies have been conducted to estimate the optimal m in m-out-of-n bootstrap on the data 

set generated from the different distributions. In each study ELEVEN different choices of m were 

considered. The same study was carried out using TEN real data sets. From the results and analysis 

of the study, we observed that  5   1.73 /   *  m pi n  was the best choice in all the given choices. Based 

on the findings of the study we conclude that if 55 % of the sample size is used, it will give the 

minimum value forG
and consequently will result in the best value of m.Moreover, in selecting the 

optimal minm-out-of-n, we can increase the number of choices of m for further investigating the 

selection of best choice of m. 
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