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ABSTRACT 

This paper proposes a fractional order total vari- ation model for additive noise removal which uses a 

different fractional order of the regularization term of the objective function. The denoising model 

based on space and time fractional derivatives on a finite domain is discretized with effective 

applications of Gru¨nwald-Letnikov(G-L) and Caputo derivatives. This model has been adopted to 

solve Alternative Direction Implicit (ADI) scheme to denoise medical images. The advantage of this 

model is for smooths the homogeneous regions and enhance edge information revealing more details 

of the image. The results show that the proposed model has desirable feedback for enhancing medical 

images, revealing more detailed information than ROF(Rudin, Osher and Fatemi), TV − L1 (Total 

Variation L1 space) and fourth order partial differential equation based models. 

 

Keywords: fractional order total variation; Grunwald Letnikov; Caputo derivative; ADI scheme; 
medical image denoising 

 

                 INTRODUCTION 

The fractional calculus has become an important 

branch of mathematical analysis in signal and 

image processing. Many algorithms and models 

based on fractional calculus for achieving 

enhancement have been developed. TV [17] is 

the most commonly used method due to its 

simplicity and comparatively better 

performance on almost all types of images. This 

successful variational model is proposed by 

Rudin, Osher and Fatemi(ROF). However, both 

from theoretical and experimental points of 

view, the TV model suffers from staircase effect. 

In [9,21,22] the authors have established a 

second order partial differential equation based 

image denoising model. In [10,12,24,26] the 

fourth order partial differential equation based 

 denoising models proved to be effective in 

solving staircase effect problem. 

The fractional order derivative models under the 

variational framework have been presented in 

several previous works [2,3,4,5,15,16,18,23,27]. 

Matheieu et al. [13] introduced edge detector 

based on fractional differentiation. The modified 

TV-ROF image denoising model based on Split 

Bregman iterations introduced in [7]. Zhang et al. 

[26] studied the spatial telegraph equation which 

could be applied to image denoising. Recently, 

Abirami et al. [1] contributed a new algorithm 

based on CN-GL scheme for image denoising. 

The second order partial differential equation 

uses increasing function regard to gradient 

operator absolute value as integrand of energy 

functional. 
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This partial differential equation can better 

preserve edges when removing the noise, but the 

resulting image may contain serious blocky 

effect. Fourth order partial differential equation 

model uses increasing function regard to 

Laplacian operator absolute value as integrand of 

energy functional. The resulting image’s 

smoothness is better than second-order partial 

differential equation because Laplacian operator 

cannot determine edges. The fourth order partial 

differential equation model blurs edge 

information. Therefore, to avoid this type of 

problem recently several researches have 

concentrated only on fractional order domain. 

In this paper, we present a new approach based 

on fractional derivatives which allows us to 

handle the total variation. The smoothing in the 

image terminology is performed by means of a 

single parameter in a nonlinear fractional partial 

differential equation. Besides, satisfactory 

practical results were also obtained by proposed 

model. The experimental results prove that it can 

not only preserve the low-frequency contour 

feature in the smooth area but also the 

nonlinearity maintained the high frequency edge 

and texture details in the areas of medical images. 

The outline of the paper is as follows. 

First, it introduces three common used definitions 

of fractional calculus and review some closely 

related work on reducing the staircase effect 

including integer-order and fractional order 

variation models for image denoising. Second we 

study fractional order diffusion equation from 

fractional order total variation model. On the 

basis, a space and time fractional partial 

differential equation is proposed. Third, we prove 

stability and convergence of the model. Finally 

we show that the denoising capabilities of the 

proposed model by comparing with ROF model, 

TV − L1 model, and fourth order denoising 

models. 

 

RELATED WORK 

The commonly used definitions of fractional 

calculus in the Euclidean measure are Riemann-

Liouville and Caputo which are premise of the 

fractional developmental equation based on the 

denoising models. 

Riemann-Liouville: It’s a fractional integral 

operator and defined as 

 

Caputo-derivative: This fractional derivative 

operator, Dα of order α is defined as with

 

Now we briefly review some related models for 

image denoising: 

Total Variation (TV) model: Total Variation [17] 

is the most commonly used model due to its 

openness and similarly better achievement on 

almost all types of images. This successful 

variational model is proposed by Rudin, Osher 

and Fatemi (ROF) and which is expressed as: 

, 

 

where |∇u| = √𝑢𝑥
2 + 𝑢𝑦

2   and λ is a positive 

parameter. 

TV − L1 model: The (ROF) model, the TV − L1 

model [2,11] is defined as the following 

variational problem. 

 
, 

The difference compared to the (ROF) model is 

that the squared L2 data fidelity term has been 

replaced by the L1 norm. Although the change is 

small, this model offers some desirable 

properties. The TV −L1 model is more effective 

than the (ROF) model in removing impulse noise 

(example salt and pepper noise) [14] and is 

contrast invariant. Therefore this model has a 

strong geometrical meaning which makes it 

useful for scale-driven feature selection and 

denoising of shapes. Being not strictly convex, 

computing a minimizer of this model is a hard 

task. 

Fourth order partial differential equation based 

model: In [24], a fourth order partial differential 

equation based denoising model has been 

proposed and proved the effectiveness in solving 
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the staircase effect problem and abilities to avoid 

the blocky effects widely seen in images 

processed by anisotropic diffusion, while 

achieving the degree of noise removal and edge 

preservation comparable to anisotropic 

diffusion(second order partial differential 

equations). The model is expressed as 

 

where |∇2u| = √𝑢𝑥𝑥
2 + 𝑢𝑦𝑦

2   and it defines 

Laplacian operator. However, the fourth order 

partial differential equation based models suffer 

from the blurring effect near edges due to the 

possible over smoothing. 

 

Proposed Space and Time Fractional Order 

Model 

We propose a new fractional variational model 

based on space and time fractional order 

derivatives. It is observed that the image edge 

direction and texture details are important 

information for the image up-sampling process. 

Thus, we may need operators that can detect the 

edge direction to enhance the texture details so 

that different orders take effect in different 

regions. Fractional order derivative can meet this 

need. The fractional order TV model is defined 

as: 

 

where 1 < α ≤ 2 refers the preservation of 

magnitude of low frequency by fractional order 

differentiation is better than that by second, 

fourth order differentiation and λ > 0 is a 

parameter that adjusts the contribution of the 

fidelity term and the term (1 − e−λ)2 is strictly 

used to minimize the value of the energy function 

in this paper. So the proposed model works very 

efficiently for denoising the images. 

In this model, there are two basic ideas behind the 

selection of fractional order differentiation. First, 

fractional order differentiation is not a local 

property of an image. Second, integer order and 

fractional order differentiations can enhance high 

frequency components, but the enhancement of 

integer order differentiation consequently 

fractional order differentiation introduces 

relatively low contrast and avoids very large 

oscillation near edges. When α = 0, the proposed 

model becomes the TV model and when α = 2, 

the proposed model becomes the second and 

fourth order variation models. 

To implement the proposed model, we need to 

derive the fractional Euler-Lagrange equation. 

. 

Using the steepest descent method, we derive the 

associated heat flow equation (1), 

 

 (1) 

where 0 < β ≤ 1 is the time fractional derivative 

and ǫ > 0 is introduced to avoid singularity. 

The solution procedure uses an equation in terms 

of time as an evolution parameter. If we choose 

dt then it’s too big and iteration process is not 

stable. If it’s too small then, it consumes time. 

The evolution model (2) is initialized with noisy 

image u(x,y,0) = f(x,y), and homogeneous 

Neumann boundary conditions [19], 

Ui,Nn = Ui,Nn −1;UN,jn = UNn−1,j

 on ∂Ω (2) 

where i = 0,1,2...M, j = 0,1,2...N. 

Let unij be the approximation to the value 

u(xi,yj,tn) where xi = i∆x, yj = j∆y and tn = n∆t, 

n ≥ 1. We discrete the equation (2) by Gr¨unwald-

Letnikov and Caputo fractional derivatives. 

The spatial fractional derivatives with right 

shifted G-L formula is employed at level tn with 

respect to the variables x and y respectively. 

; 

. 
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Let and  be the adjoint operators of ∇αx and 

∇αy respectively, and defined by 

; 

, 

Also the normalised Gr¨unwald weights are 

stated by 

 

and remark that these normalized weights depend 

only on the order α and the index k. The first four 

terms of this sequence are given by 

 
. 

The fractional order time derivative will be 

replaced by Caputo fractional derivatives of the 

3rd order approximation, 

, 

where bs = (1 + s)1−β − s1−β and s = 0,1,2...n;n 

≥ 1 and we consider 

 

.

 (3) 

Denote the time step by τ, the discrete version of 

the equation (2) is represented by 

. where we consider a1 = Γ(2 − β)(−1)α(1 − e−λ)2 

and . 

The finite difference operations are described as 

follows: 

 

 (4) 

, 

 (1 − a1Lα,x − a1Lα,y)unij+1 = (1 − Lα,t 

+ a2)unij − a2fijn, (5) 

The most suitable method in solving classical 

multi-dimensional diffusion equations is ADI 

scheme and it is used to significantly reduce the 

computational cost. The ADI scheme has been 

used to solve the two-dimensional space 

fractional diffusion equation [1]. For using ADI 

scheme, some perturbations of equation (6) used 

to derive schemes that are specified and solved in 

one direction at a time, and for this problem the 

equation (6) is written in a separate form 

 

, (6) 

which produces an additional perturbation error 

as follows: 

. 

Equation (7) can be divided into two equations, 

using an intermediate solution u∗i,j, 

 (1 − a1Lα,x)u∗i,j = (1 − Lα,t + a2)uijn − 

a2fijn, (7) 

 . (8) 

The intermediate solution u∗i,j in equations (8) 

and (9) is defined to advance the numerical 

solutions unij at time tn and  at time tn+1. 

Here, the ADI scheme is worked in two different 

ways. First, a set of Nx − 1 equations in x-

direction (for each fixed yj)are solved to obtain 

the intermediate solution u∗i,j from equation (8) 

and second to change the spatial direction, a set 

of Ny − 1 equations in y-direction (for each fixed 

xi) are solved to obtain the solution  by using 
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the intermediate solution u∗i,j from the first step. 

If α ∈ (1,2] and β ∈ (0,1], then the equation (1) is 

unique, unconditionally stable, consistent and its 

temporal partial derivative up to order α+1 and 

spatial partial derivatives up to order r, where r > 

α + β + 3. The ADI scheme is defined by (6) for 

solving (1) also from [17] proved the truncation 

error (in Table 2) of the form O(∆x) + O(∆y) + 

O(∆t) and (Lα,xLα,yunij+1) converges to mixed 

partial derivative of order O(∆x)+O(∆y). Hence 

the numerical solution of  and unij are 

calculated from the initial and boundary 

conditions (3). 

As a result, the discrete algorithm for solving the 

proposed model is summarized as follows: 

Initialization: fix u0 = f,α = 1.6,β = 0.5,τ = 0.05. 

Update  by (9). 

Check if  total; then stop. 

Set unij+1 = u(x,y). 

Output display u(x,y). 

 

Stability Analysis 

In this section, we have considered the stability 

analysis of the implicit finite difference 

approximation equation (8). 

Theorem 4.1. Each one dimensional implicit 

system defined by the linear difference equations 

(8) and (9) is unconditoionally stable for all 1 < α 

≤ 2 and 0 < β ≤ 1. 

Proof. At each grid point yk for k = 1,...,Ny − 1, 

consider the linear system of equation defined by 

equation (8). This system of equations may be 

written as AkUk∗ = (1 − Lα,t + a2)Ukn + Fkn, 

where incorporating the boundary conditions 

from equation (9). We have 

, 

(1 − Lα,t + a2)Ukn + Fkn = [(1 − Lα,t + 

a2)U1n,k−,a2f1n,k(1 − Lα,t + a2)U2n,k − 

a2f2n,k,..., (1 − Lα,t + a2)UNnx−1,k − 

a2fNnx−1,k]T 

and Ak = [Aij] is the Nx − 1 × Nx − 1 matrix of 

coefficiets resulting from the system of 

difference equations at the gridpoint yk, where 

the matrix entries along the ith row are defined 

from equation (8). For i = 1 the equation becomes 

, 

For i = 2 the equation becomes 

, 

For i = Nx − 1 the equation becomes 

−DNx−1,kLα,NU0∗,k − 

DNx−1,kLα,Nx−1U1∗,k + ... + (1 − 

DNx−1,kLα,1)UN∗x−1,k − DNx−1,kLα,0UN,k∗ 

= (1 − Lα,t + a2)UNnx−1,k + a2fNn+1x−1,k. 

where the coefficients . The entries 

of the matrix Aij for i = 1,2,...,Nx −1 

and Aij for j = 1,2,...,Nx − 1 are defined by Aij =

  

 , where j ≤ i − 1 

 1 − Di,kLα,1,               where  

j=i+1 

                    −Di,kLα,0,  where j > i + 1 

We will now apply the Grehgorin theorem [11] 

to conclude that every eigenvalue of the matrix 

Ak has a magnitude strictly larger than 1. 

According to the theorem, every eigen value λ of 

the matrix Ak has a real part larger than one. This 

proves that the method is stable. When sweeping 

in the alternate diection to solve for un+1 from 

u∗,then the Similar results hold for the finite 

difference equations defined by (10). Hence this 

system is unconditionally stable.  

 

Covergence Analysis 

The Table 2 shows the order of the convergence 

of the model as the grid is refined as all step sizes 

are halved. The ADI scheme is defined by (6) for 

solving (1) also from [17] proved the truncation 

error (in Table 1) of the form 

O(∆x)+O(∆y)+O(∆t) and (Lα,xLα,yunij+1) 

converges to mixed partial derivative of order 

O(∆x) + O(∆y). 
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Experimental Results 

Medical image denoising is a more significant 

method which leads physicians in investigation 

of diseases. Medical images from MRI(Magnetic 

Resonance Imaging), CT(Computed 

Tomography), PET(Positron Emission 

Tomography), OCT(Optical Coherence 

Tomography), X-Ray and Ultrasound etc. These 

imaging modalities help in the evaluation of 

various organs of the body like brain, lung, 

breast, stomach, soft tissues, bone, eyes, teeth 

and blood vessels. Therefore, removal of noise 

from medical images is very essential for clinical 

purposes. 

In this section, we test the performance of the 

proposed model and also compare the results 

with ROF, TV − L1 [17] and fourth order partial 

differential equation based models [12,24] in 

terms of vision and quantitative analysis 

including the Peak Signal to Noise Ratio(PSNR) 

and Mean Square Error(MSE) of the restored 

image which are given by 

, 

where f,u and M×N are the restored image, the 

true image and size of the image respectively. We 

use five types of medical images as benchmark 

images as shown in Figures(1-5). Some 

parameters are chosen as fixed values σ = 

10,15,20 and 25 including β = 0.5 and α = 1.6. 

The proposed model denoises the noised image 

with the regularization parameter λ chosen in 

such a way that 0 ≤ λ ≤ 1 as suggested in global 

image threshold using Otsu’s method. When λ 

increases, the smoothing effect increases with 

size of the neighboring window [1,2]. For 1 < α 

< 2, fractional derivative can preserve the low 

frequency contour feature in the smooth areas 

and nonlinearly keep high frequency marginal 

feature in areas where gray level change greatly, 

and also enhance the texture information in those 

areas where gray level does not change evidently. 

For 0 < β < 1, time fractional derivative can 

preserve stability of the iteration process and 

reduce computation time. The stopping criterion 

for the iteration is . We 

considered ǫ = 10−5 in the numerical experiment. 

MATLAB 22.0.0. is used in experimental and 

numerical analysis. 

The first experiment is to perform the proposed 

scheme on the MRI of the cervical spine image 

(Figure 1(a)). Cervical spine (neck) is soft-

housing the spinal cord that communicates 

informations from brain to control all aspects of 

the body. This MRI image showed an oblong 

expansile intramedullary lesion at the c2/c2 level 

of spinal cord. The noisy image with Gaussian 

noise is shown in Figure 1(b). The denoising 

results are shown in Figure 1(c), Figure 1(d), 

Figure 1(e) and Figure 1(f) respectively. It is 

observed that the reconstructed denoised images 

by ROF based model is effective in preserving 

the ringing artifacts, but it yields piecewise 

constant block artifacts as shown in Figure 1(c), 

Figure 1(d) and Figure 1(e). Besides, the ROF 

model and TV − L1 based models may generate 

a false grey edge along the spinal cord. The 

denoising results of proposed model (Figure 1(f)) 

is the best, which preserves structure and all the 

information without any loss. 

Second experiment is to perform the proposed 

scheme on the PET/CT of lung image (Figure 

2(a)). In this image the lung is affected by cancer. 

This image has two partition such as CT scan of 

chest and corresponding PET/CT image showing 

a mass in the left lung (top arrow). The noisy 

image Figure 2(b) is affected with Gaussian noise 

levels σ = 10,15,20 and 25 on CT image. From a 

subjective view of the visual effect, we know the 

following from Figure 2(a). First, the denoising 

capabilities of TV − L1 is worse than the other 

models, because they obviously diffuse and 

smooth the high frequency edge and texture 

details from Figure 2(d). Figure 2(d) and Figure 

2(e) have preserved that the texture details are 

blurred. The denoising capabilities of proposed 

model (Figure 2(f)) is the best, which preserves 

the high frequency edge and texture details 

comparitively other methods. 

Third experiment is to perform the proposed 

scheme on the OCT of retina image (Figure 3(a)). 

One of the leading causes of blindness is diabetic 

retinal eye disease which is called as diabetic 

retinopathy. Figure 3(a) shows the tiny red spots 

that may lead to haemorrhage. The noisy images 
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Figure 3(b) are corrupted by different Gaussian 

levels σ = 10,15,20 and 25. We list the portion of 

the up-sampling results by the proposed model 

and ROF, TV −L1 and fourth order partial 

differential equation models in Figures 3(c), 3(d) 

and 3(e). From the viewpoint of visual effect, we 

know the following from Figure 3(f) when noise 

is very strong. 

Fourth experiment is to work the proposed 

scheme on the X-ray image (Figure 4(a)). X-rays 

makeup type of electromagnetic radiation. This 

X-ray images were taken during health 

assessment and had proved to be a useful 

diagonstic tool that also help to minimize time 

under anaesthesia. Figure 4(b) is corrupted by 

Gaussian noise at four different level such as σ = 

10,15,20 and 25. In Figures 4(c), 4(d) and 4(e), 

structure is not preserved as well as have lost the 

information. Figure 4(f) provides original 

information without any loss and can be used for 

clinical purpose. 

Fifth experiment is to perform the proposed 

scheme on ultra sound liver tumor segmentation 

image (Figure 5(a)). This ultrasound image is 

safe and painless and produces pictures of inside 

the body using sound waves. The noisy image 

Figure 5(b) is corrupted by different Gaussian 

levels σ = 10,15,20 and 25. We list the portion of 

the up-sampling results by the proposed model 

and ROF, TV − L1 and fourth order partial 

differential equation models in Figures 5(c), 5(d) 

and 5(e). First, the denoising capabilities of TV 

−L1 is worse than the other models. We can see 

indistinctly that the contour and the texture 

details of inner organ can hardly be recognized 

from Figures 5(c), 5(d) and 5(e). Finally, the 

denoising capabilities of proposed model is the 

best because from Figures 5(f). We see that the 

contour is clear and edge and texture details can 

be identified. 

 

FIGURE 1: The denoising results of MRI-cervical spine image. 

 

Finally, the calculated values and CPU time for 

all the experiments are shown in Table 2. The 

comparision of PSNR and MSE value between 

four models are shown in Figures (6) and (7). In 

Figure (8), the α values are shown in x−axis and 

PSNR values obtained from four model are 

marked in y−axis. It is clearly proved that highest 

PSNR value is achieved at highest α value and 

lowest PSNR value is achieved at lowest α value. 

Most of the real time and online applications 

require the scheme with less execution time. 

 

CONCLUSION 

In this paper, we proposed a variational model on 

the fractional order derivative. By adaptively 
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combining space and time fractional order in 

different medical image regions, we proposed a 

model that can preserve important structures such 

as degrees and textures and also reduced staircase 

effect when removing noise. The experimental 

results confirm the effectiveness of the proposed 

approach for medical image denoising. 
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FIGURE 2: The denoising results of PET/CT-lung image 

 

FIGURE 3: The denoising results of OCT-retina image 

  



e61 

Fractional Diffusion Equation for Medical Image Denoising using ADI Scheme 

                  J Popul Ther Clin Pharmacol Vol 30(12):e52–e63; 08 May 2023. 

This article is distributed under the terms of the Creative Commons Attribution-Non  

                         Commercial 4.0 International License. ©2021 Muslim OT et al. 

 

 

 

 

FIGURE 4: The denoising results of X-ray image 

 

 

FIGURE 5: The denoising results of Ultra sound image 

 

TABLE 1: Maximum absolute numerical 
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FIGURE 6: Comparison of PSNR values for four models in α ∈ [1,2] 

 Models σ = 10 σ = 15 σ = 20 σ = 25 Average CPU/Iterations(sec) 

Image a: MRI-cervical spine image (λ=0.5882 and α = 1.6)  

  
Fourth order pde       45.55       45.58      46.76      47.63       46.38                   0.610  

Image b: PET/CT-lung image (λ = 0.5617 and α = 1.6)  

Fourth order pde         34.15     34.14      33.92      33.43         33.91                  0.934  

Image c: OCT-retina image (λ = 0.5699 and α = 1.6)  

Fourth order pde 45.26 45.87 45.21         45.09       45.36                    0.967  

Image d: X-ray image (λ = 0.5843 and α = 1.6)  

Fourth order pde         48.22     47.56      46.91      44.90         46.90                  0.436  

Image e: Ultra sound image (λ=0.5982 and α = 1.6)  

Fourth order pde         44.87     44.58      44.75      43.89        44.52                   0.615  
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FIGURE 7: Comparison of MSE values for four models 

  

 

FIGURE 8: Comparison between PSNR values of four models 

 

 


