
e23

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non
Commercial 4.0 International License. ©2021 Muslim OT et al.

Journal of Population Therapeutics
& Clinical Pharmacology

RESEARCH ARTICLE

DOI: 10.47750/jptcp.2023.30.12.004

Improving Task Scheduling on The Cloud Through Low Latency and Cost
Effective Technique
Bennet Praba M.S1*, Sahil Saju2, Gokul N3, Karthick raja G4
1,2,3,4Computer Science and Engineering, SRMIST, Ramapuram, Chennai, India

*Corresponding author: Bennet Praba M.S, Computer Science and Engineering, SRMIST,
Ramapuram, Chennai, India

Submitted: 15 March 2023; Accepted: 17 April 2023; Published: 04 May 2023

ABSTRACT

Offloading is emerging as a promising idea to allow handheld devices to access intensive applications

without incurring performance or power costs. This is especially useful for businesses that want to run

line-of-business applications on handhelds.. However, developing applications using cloud computing

resources is a challenge because supporting the low-latency and scalability needs of applications

requires highly dynamic orchestration of heterogeneous resources at different levels of the network

hierarchy. It Is difficult. To reduce this complexity, this application provides a programming model

that provides simplified programming abstractions and supports applications that scale dynamically at

runtime. The goal of offloading is to decide for or against offloading. Code offload can make decisions

in a number of ways. Much of the research on code swapping focuses on more sophisticated if-else

conditions. Code offloading machine learning is currently an important research topic. Machine

learning methods are employed to significantly improve the currently recommended methods and to

perform robustly when tackling a wide range of learning tasks

Keywords: Offloading, run line-of business, heterogeneous, orchestrating highly, sophisticated,
robustly whilst tackling

 INTRODUCTION

In recent years, the popularity of handheld

devices has increased the demand for mobile

applications that offer high performance and

power efficiency. Offloading has emerged as a

promising approach to address these needs by

allowing resource-intensive tasks to be

performed on remote cloud resources. However,

to make offloading profitable for the company,

he must address two key challenges. Ensure data

protection and provide offload at scale with a

variety of handheld target and computing

resource capabilities.

Additionally, developing cloud-based

applications involves complex orchestration of

heterogeneous resources at various network

layers, which can pose significant challenges in

achieving low latency and scalability. To address

these issues, this white paper presents a

programming model that supports dynamic

runtime scaling and provides simplified

programming abstractions. The goal of this

research is to enable timely task execution while

maintaining quality of service (QoS), maximizing

performance while minimizing energy

consumption in cloud data centers.

e24

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

Machine learning techniques are also being

explored to improve offload decision-making

processes, with the aim of achieving robust and

reliable results across a wide range of learning

tasks. Ultimately, the purpose of this research is

to provide a cost-effective solution for reliable,

low-latency task scheduling in cloud

environments. This makes offloading a more

practical and accessible approach for businesses.

Mobile Edge Computing (MEC) is one of the

most promising technologies for next-generation

wireless communication systems. This article

examines the problems of dynamic caching,

computational offloading, and resource

allocation in cache-based multi-user MEC

systems with stochastic task arrivals. There are

some computationally intensive tasks in the

system and each mobile user (MU) needs to

perform the tasks locally or remotely on one or

more MEC servers by offloading the task data.

Commonly used tasks can be cached on her MEC

server to avoid duplication of work when

outsourced. Cloud Radio Access Network (C-

RAN) has emerged as a potential next-generation

access network technology candidate to handle

the growing mobile data traffic, and Mobile

Cloud Computing (MCC) has emerged as a

resource-constrained candidate. emerging as a

possible candidate.

It offers a promising solution for some mobile

users to perform calculations. strenuous task.

This document introduces C-RAN with MCC,

leveraging the above two cloud-based techniques

to improve both performance and power

efficiency. An interesting approach to running

resource-intensive applications in mobile cloud

computing environments is to offload

computation and data to the cloud. However,

offloading to a remote cloud is not always the

best solution due to the increased latency and

power consumption associated with offloading

and intermittent wireless communication. Our

main goal was to use this concept to optimally

decompose the set of tasks performed by the

mobile client and the two-tier cloud architecture.

One is for individual users and the other is a

collaborative mobile application.

A comparative study was performed to evaluate

the performance of the proposed TS-DT

algorithm. It runs under existing algorithms.

Heterogeneous Early End Time (HEFT), a

priority technique Similarity to the ideal solution

incorporating the entropy weighting method

(TOPSIS-EWM) and combined with Q-learning

Heterogeneous earliest finish time (QL-HEFT).

Our results show that the proposed TS-DT

algorithm outperforms existing ones. HEFT,

TOPSIS-EWM, and QL-HEFT algorithms by

reducing manufacturing margins by 5.21%,

2.54%, and 3.32%, respectively, and improving

resources Utilization improved by 4.69%, 6.81%,

and 8.27%, respectively, and load balancing

improved by 33.36%, 19.69%,

and 59.06%.average.

Reasons To Pursue This Project

Optimizing Task Scheduling

The task scheduling process aims to determine

the optimal sequence of job execution that

utilizes the least amount of resources, including

time, processing power, memory, and other

resources. By optimizing task scheduling,

organizations can improve resource utilization

and reduce costs while ensuring that all tasks are

completed on time and according to specific

requirements.

To achieve this goal, the task scheduling process

involves evaluating various factors, including

task execution time, the cost of execution, and the

availability of resources. By considering these

factors, organizations can determine the optimal

sequence of job execution that minimizes total

execution time and cost while ensuring proper

resource utilization.

Reducing Cost Efficiency

In addition to improving cost efficiency,

optimizing task scheduling can also help

organizations meet specific requirements and

constraints related to task execution, such as

deadlines, dependencies, and priority levels. By

balancing these factors, organizations can

achieve optimal task scheduling that meets their

unique needs and requirements.

e25

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

Previous Work

This document [1] introduces the Task

Scheduling Decision Tree (TS-DT) algorithm, a

decision tree-based task scheduling algorithm.

The performance of the proposed task scheduler

is evaluated against load balancing parameters

such as makespan, resource utilization, and

power consumption in a heterogeneous

environment. The work in this white paper makes

the following important contributions. They

proposed a new task scheduling algorithm based

on decision trees for scientific workflows.

The goal is to minimize [2]computing and

network energy.

Strict minimum streaming rate and maximum

computing power, and the entire ecosystem under

network constraints means. to this end: the

energy of the target ecosystem, The virtualized

and multi-core nature of fog/cloud servers. the

resulting problem is not convex, Since both

continuous and discrete variables are included,

the optimality-preserving decomposition is A

cascade of (continuous) resource assignment

subproblems and (discrete) task assignment

subproblems. we Solve the first subproblem

numerically by a series of well-designed

gradient-based adaptive iterations,We address

the second sub-problem by relying on ad-hoc

developed elite genetics algorithm.

Mobile Edge Computing [3] (MEC) has become

a key technology to offload the computational

burden of SMDs.

Reduce service latency for compute-intensive

applications. Benefit from network capabilities

Virtualization enables MEC to compute and

integrate Cloud Radio Access Network (C-RAN)

on UDN. communication cooperation. However,

this is the case for stochastic arrival times of

computational tasks and time-varying channel

conditions.

The challenge of outsourcing computational

tasks online using energy efficient computing

and wireless resources

management. This article examines MEC-aware

task offload and resource allocation issues. High-

density C-RAN aimed at optimizing network

energy efficiency.

The Industrial Internet of [4] Things (IIoT) offers

unprecedented opportunities to drive

manufacturing intelligence and smartness.

However, timely processing of large-scale IIoT

data by traditional computational frameworks

such as cloud computing is non-trivial due to

costly resource consumption, unacceptable

delays, and unacceptable loads on backbones.

Mobile Device Cloud (MDC) leverages the idle

resources of intelligent objects at the edge, and its

flexible resource deployment and near task

offload make it promising for IIoT data analytics.

[5]. This white paper first introduces a new

mobile cloud called Opportunistic Task

Scheduling over Co-located Clouds (OSCC) that

provides flexible cost/latency trade-offs between

traditional remote cloud service mode and mobile

cloudlet service mode. Suggest a let-based

service mode. We then conduct a detailed

analytical study of OSCC modes and solve the

power minimization problem by trade-offs

between remote cloud mode, mobile cloudlet

mode, and OSCC mode

[6] Mobile Edge Computing (MEC) is one of the

most promising technologies for next-generation

wireless communications. Communications

system. This article discusses dynamic caching,

computation offloading, and Resource

Allocation in a Cache-Assisted Multiuser MEC

System with Stochastic Task Arrival. there are

some Computationally intensive tasks in the

system, and each mobile user (MU) must perform

tasks either locally or not. Run remotely on one

or more MEC Servers by outsourcing task data.

Popular tasks can be cached on his MEC server

Avoid duplication when outsourcing.

In this paper,[7] a cloudlet-based task-centric

model is proposed. The system is first presented

with analysis and discussion Local Mobile

Devices, Cloudlets, Remote Clouds, Network

Roles and Core Perspectives function. Charging

scenarios are also formulated in proposed

systems, including and task module, compute or

network module, and joint load planning

proposed algorithm.

This white paper proposed [8] a new framework

for modeling mobile applications as location-

time workflows.

e26

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

The point here is that this abstraction models the

usage patterns of mobile user services based on

user mobility. our

The main goal was to use this concept to

optimally decompose the set of tasks performed

on the mobile client.

Two-tier cloud architecture for two types of

mobile applications: single-user and single-user

Collaborative mobile application.

[9]. A new C-RAN architecture including mobile

clones is proposed in this white paper. Two

cloud-based techniques. In particular, I assume

that the task should be performed on mobile

devices We clone each UE and model this task

with two functions. H. Total number of CPU

cycles required for this Total data size required to

complete this task and send the results to the UE

via C-RAN. We Modeling this problem

minimizes the overall energy cost of mobile

clouds and mobile networks. Optimization

problem when acquiring QoS.

in this paper, [10] we proposed a SOBDO that

optimally selects targets to load resource-

intensive tasks. Between different targets in an

MCC environment. SOBDO uses resource-

intensive static partitioning Applied to smaller

tasks, apply the concepts of auction theory to

select the best target for your cargo special

mission. The SOBDO testbed evaluation

compares the efficiency of different

communication modes.3G mobile

communication, WiFi.

Proposed System

In this Paper, we introduce the TS-DT algorithm

to reduce the makespan, enhance load balance,

and maximize utilization of the resource. The

algorithm consists of three phases: the priority

task, the resource matrix, and the resource

allocation phase. First, the task priority phase is

used to assign a rank for each task. The resource

matrix phase is used in collecting the tasks’

features in the form of a matrix, while the

resource allocation phase is where tasks are

scheduled on the proper VMs using

the decision tree.

FIG 1: The Proposed TS-DT Algorithm Using

Decision tree

Ts-Dt Algorithm

A decision tree is a hierarchical data structure

that uses the divide-and-conquer method to

represent data. A decision tree, on the other hand,

is a rooted tree with leaf and non-leaf nodes. The

decision criteria for classification and regression

trees obviously depend on the decision tree. A

decision tree, on the other hand, is a rooted tree

with leaf and non-leaf nodes. Leaf nodes

represent classifications or decisions, and non-

leaf nodes represent choices, dividing the

instance space into two or more subspecies based

on discrete functions of input attribute values.

The decision tree algorithm for task scheduling

can be expressed as:

T(i,j) = min{max{T(i-1,k), C(k+1,j)}

where T(i,j) represents the minimum time

required to complete tasks i through j and C(i,j)

represents the cost of completing tasks i through

j .

C(i,j) = C_comp(i,j) + C_storage(i,j) +

C_network(i,j)

where C_comp(i,j) represents the compute cost

associated with executing the task from i to j,

C_storage(i,j) represents the storage cost

associated with the task, and C_network(i,j)

represents the network cost associated with the

task.

R(i,j) = R_compute(i,j) + R_storage(i,j) +

R_network(i,j)

where R_compute(i,j) represents the availability

of compute resources for task execution,

R_storage(i,j) represents the availability of

storage resources, and R_network(i,j) represents

the availability of network resources.

By considering these values and equations, the

TS-DT algorithm can effectively schedule tasks

e27

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

in cloud computing environments, minimizing

the total execution time and cost while ensuring

resource availability and meeting

other constraints.

This algorithm aims to minimize the total time

required to complete a set of tasks subject to

various constraints.

The task scheduling decision tree algorithm is the

process of determining the optimal order in

which tasks should be completed based on their

priority and estimated time. The algorithm

involves building a decision tree, assigning

probabilities to each decision, calculating

expected values for each branch, and choosing

the best branch. This process is repeated for each

decision point until the complete schedule is

created. This algorithm is effective at optimizing

task schedules, but requires accurate estimates

and a good understanding of project requirements

and dependencies.

A task scheduling decision tree algorithm is a

type of decision-making process used to optimize

the scheduling of tasks within a project. The

algorithm evaluates the expected value of each

branch of the decision tree to determine the

optimal order for completing the task.

FIG 2: Decision Tree Structure

The first step in the algorithm is to prioritize each

task by assigning a score based on factors such as

deadline and importance to the overall project.

The estimated time required to complete each

task is determined using historical data or expert

opinion. A decision tree is then built for each

task, showing possible outcomes at each decision

point. For example, if your first task has three

dependencies, create three branches for each

possible order in which those dependencies can

be completed. Each decision is then assigned a

probability based on the estimated time required

for each task and other relevant factors.

Architecture Diagram

 FIG 3

Module Description

Module 1: code profiler

Offloading is the opportunistic process of relying

on a remote server to execute delegated code

from a mobile device. In the process, the mobile

device is given local decision logic to detect

resource-intensive parts of the code.

Network communication can presume mobile

phones with less computation required to execute

code. Code Profiler decides what to swap out. So

the method, thread, or class portion of the code

(C) is identified as follows: Outsourcing

Candidate (OC). Code splitting requires you to

choose which code to swap out. Code can be split

Through various strategies; for example,

software developers can explicitly choose which

code to swap out. Special static annotations

(@Offloadable, @Remote, etc.). Other strategies

implicitly parse the code at runtime. Automated

mechanism So when the application is installed

on the device, the mechanism chooses which

code to offload. Mechanisms implement

strategies such as static analysis to deduce

whether a piece of code is intensive and traces of

history. Automated mechanisms are preferred

over static mechanisms because they allow

customization of the code that is executed

different devices.

e28

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

Module 2: system profiler

System Profiler is responsible for monitoring

several parameters of your smartphone. B.

Available bandwidth and data size Power to send

and run code. These parameters affect when to

outsource to the cloud. Conceptually The offload

process is optional and the effort required to run

her OC on a mobile device When called remotely

as local execution. Otherwise discharge is not

recommended as an excessive expenditure of

energy and time Consumed when transferring

data to the cloud.

Module 3: Decision engine

A decision engine is an inference engine that

suggests when to outsource to the cloud. The

engine gets the data received from the system and

code profilers and apply some logic to them

(linear programming, fuzzy logic, Markov

chains, etc.)

The engine can measure whether handsets are

getting tangible benefits from outsourcing to the

cloud. the engine

If the result is positive, the swapping mechanism

is enabled and the code is called remotely.

otherwise the code is executed local. Mobile

phones are offloaded to the cloud at a rate

dependent on the size of the data and available

bandwidth. If code offloading is

counterproductive for the device, it's usually due

to an imprecise wrong reasoning process Based

on the range of observable parameters that

System Profiler can monitor The proposed

system fully supports a fully functioning

decision engine.

The engine uses the past task execution to predict

their execution time and output size. The engine

along with the network profiler estimates the

running time of any given task in both local and

cloud contexts. Predictions are possible only past

records are exists. It is not the case for the freshly

installed applications. The overcome this

limitation, the Proposed system offers two

execution modes:

1.Concurrent Mode

2.Optimistic Mode

In concurrent mode, tasks are simultaneously run

on both local and cloud contexts. Alternatively,

in optimistic mode, the task is run on only one

context depending on the output of the decision

engine. Tasks are always run concurrently when

no past records are available: this also allows us

to feed data into the decision engine.

Performance Evaluation

According to the implementation results, it is

found that the proposed TS-DT algorithm

outperforms the HEFT, TOPSIS-EWM, and QL-

HEFT algorithms. This is because of the

following reasons:

During the Task Priority phase, the proposed TS-

DT algorithm determines the proper task to be

executed by increasing its priority while using the

task length and number of childs. During the

Resource Allocation phase, the decision tree and

the summation of the features in the task’s matrix

are used to select the VM with the lowest value.

Some features are used to enhance the make span

(i.e., computation cost, Earliest Finish Time

(EFT), and parent location).

RESULT

1. According to the comparative results in Table

4, We found that the proposed TS-DT algorithm

outperforms, in average, the default HEFT,

TOPSIS-EWM, and QL-HEFT algorithms by

approximately 5.21%, 2.54%, and

3.32%, respectively.

FIG 4: Improved Average Rate of Makespan (in

%) of the Proposed TS-DT Algorithm

2. According to our comparative results in Table

5 show that the proposed TS-DT algorithm

outperforms, in average, the default HEFT,

TOPSIS-EWM, and QL-HEFT algorithms by

e29

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

approximately 4.69%, 6.81%, and

8.27%, respectively.

FIG 5: Improved Average Rate of Resource

Utilization (in %) for the Proposed TS-

DT Algorithm

3. According to the comparative results in Table

6, it is found that the proposed TS-DT algorithm

outperforms, in average, the default HEFT,

TOPSIS-EWM, and QL-HEFT algorithms by

approximately 33.36%, 19.69%, and

59.06%, respectively.

FIG 6: Improved Average Rate of Load

Balance (in %) of TS-DT Algorithm

FIG 7: Output

CONCLUSION AND FUTURE WORK

In this system, we proposed a framework for

partial computational unloading to determine

energy-optimal datasets. I entrust it to Mex.

Application and network parameters heavily

influence and are taken into account in

outsourcing decisions taken into account by the

proposed framework. This work includes all

major energy consumption units. Radio codec

and local Calculate your units to get a more

accurate partial offload configuration. Energy

efficiency during use is also evaluated

Compression to reduce transmitted data. The use

of compression is observed despite the additional

energy consumption As such, it is a power saving

option for his MEC applications which are

computationally intensive. Regarding the

obtained energy-optimal discharge configuration

using the proposed framework.

Our results show that the proposed TS-DT

algorithm outperforms the existing HEFT,

TOPSIS-EWM, and QL-HEFT algorithms by

reducing make span by 5.21%, 2.54%, and

3.32%, respectively, improving resource

utilization by 4.69%, 6.81%, and 8.27%,

respectively, and improving load balancing by

33.36%, 19.69%, and 59.06%,

respectively in average.

Future work

As a future direction, we would like to explore

algorithms for more advanced compute offload

scenarios. It may contain multiple subtasks that

have dependencies on each other and may need

to be run on a regular basis.

REFERENCES
1. Multiobjective Task Scheduling in Cloud

2. Environment Using Decision Tree Algorithm

3. Hadeer Mahmoud 1,2, Mostafa Thabet3,

Mohamed H. Khafagy1, And Fatma A.

Omara4, (Member, Ieee).

4. EcoMobiFogDesign and Dynamic Optimization

of a 5G Mobile-Fog-Cloud Multi-Tier Ecosystem

for the Real-Time Distributed Execution of

Stream Applications Enzo Baccarelli , Michele

Scarpiniti and Alireza Momenzadeh 2019.

5. Dynamic Task Offloading and Resource

Allocation for Mobile-Edge Computing in Dense

Cloud RAN D Qi Zhang , Lin Gui , Fen Hou ,

Jiacheng Chen , Shichao Zhu and Feng Tian

2020.

6. BC-Mobile Device Cloud:A Blockchain-Based

Decentralized Truthful Framework for Mobile

Device BC Cloud Mu Wang , Changqiao Xu ,

e30

Improving Task Scheduling On The Cloud Through Low Latency And Cost Effective Technique

 J Popul Ther Clin Pharmacol Vol 30(12):e23–e30; 04 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

 Commercial 4.0 International License. ©2021 Muslim OT et al.

Xingyan Chen , Lujie Zhong , Zhonghui Wu and

Dapeng Oliver Wu 2021.

7. Opportunistic Task Scheduling over Co-Located

Clouds in Mobile Environment Min Chen , Yixue

Hao , Chin-Feng Lai , Di Wu , Yong Li

and Kai Hwang 2018.

8. Deep reinforcement learning for dynamic

computation offloading and resource allocation in

cache- Dassisted mobile edge computing systems

Samrat Nath and Jingxian Wu 2020.

9. A Task-Centric Mobile Cloud-Based System to

Enable Energy-Aware Efficient Offloading

Azzedine Boukerche , Shichao Guan and Robson

Eduardo De Grande 2018.

10. On Optimal and Fair Service Allocation in

Mobile Cloud Computing M. Reza Rahimi ,

Nalini Venkatasubramanian , Sharad Mehrotra

and Athanasios V. Vasilakos 2018.

11. Joint Energy Minimization and Resource

Allocation in C-RAN with Mobile Cloud J Kezhi

Wang , Kun Yang and Chathura Sarathchandra

Magurawalage 2018.

12. Auction-Based Optimal Task Offloading in

Mobile Cloud Computing Sudip Misra , Bernd E.

Wolfinger , M.P. Achuthananda , Tuhin

Chakraborty , Sankar N. Das and Snigdha Das

2019.

